www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Umsortieren von Vektor
Umsortieren von Vektor < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umsortieren von Vektor: Idee
Status: (Frage) beantwortet Status 
Datum: 15:00 Di 24.07.2012
Autor: Druss

Hallo,

ich hoffe das ist das richtige Forum^^.

Ich suche nach einer Möglichkeit die Einträge eines nx1 Vektors mit n gerade so umsortieren, sodass

- keiner der Einträge mehr an der ursprünglichen Stelle steht
- die Korrelation des Vektors mit den umsortierten Vektor möglichst hoch ist

Ich habe mir gedacht, dass evtl wie folgt vorgehen kann:

1) Nehme den ersten Eintrag [mm] x_1. [/mm]
2) Berechne für [mm] x_1 [/mm] zu jedem Eintrag [mm] x_i [/mm] , i=2,....,n die euklidische Distanz.
3) Nehme den Wert [mm] x_i [/mm] bei welchem die euklidische Distanz am kleinsten ist.
4) Setze diesen Wert [mm] x_i [/mm] an die Stelle von x1 und x1 anstelle von [mm] x_i. [/mm]
5) Fahre mit [mm] x_2 [/mm] analog fort (wenn [mm] x_i =x_2 [/mm] dann [mm] x_3 [/mm] etc...).

Nun bin ich mir jedoch ein wenig unsicher, da ich so die größten Abstände bei den Zuordnungen erhalte, welche zuletzt geschehen.

Ich bin mir nicht sicher ob es nicht beispielsweise möglich ist anstelle [mm] x_1 [/mm] nicht den Wert [mm] x_i [/mm] zu nehmen sondern einen Wert [mm] x_j, [/mm] weil bsp. gilt

[mm] (x_1 [/mm] - [mm] x_j)^2 [/mm] + [mm] (x_n [/mm] - [mm] x_i)^2 [/mm] < [mm] (x_1 [/mm] - [mm] x_i)^2 [/mm] + [mm] (x_n [/mm] - [mm] x_j)^2 [/mm]

Ich hoffe ihr versteht was ich meine^^.


Des Weiteren habe ich mir dann gedacht, dass ich einfach alle möglichen Kombinationen berechne und dann die Zuordnung wähle für welche die Summe der euklidischen Distanzen am kleinsten wird.

Wenn n jedoch recht groß ist, so gibt es leider seeehr viele Kombinationsmöglichkeiten nämlich

[mm] \summe_{i=1}^{n} [/mm] (n-i)!

Viele

Grüße
Druss

        
Bezug
Umsortieren von Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Di 24.07.2012
Autor: abakus


> Hallo,
>  
> ich hoffe das ist das richtige Forum^^.
>  
> Ich suche nach einer Möglichkeit die Einträge eines nx1
> Vektors mit n gerade so umsortieren, sodass
>  
> - keiner der Einträge mehr an der ursprünglichen Stelle
> steht
>  - die Korrelation des Vektors mit den umsortierten Vektor
> möglichst hoch ist
>  
> Ich habe mir gedacht, dass evtl wie folgt vorgehen kann:
>  
> 1) Nehme den ersten Eintrag [mm]x_1.[/mm]
>  2) Berechne für [mm]x_1[/mm] zu jedem Eintrag [mm]x_i[/mm] , i=2,....,n die
> euklidische Distanz.
> 3) Nehme den Wert [mm]x_i[/mm] bei welchem die euklidische Distanz
> am kleinsten ist.
>  4) Setze diesen Wert [mm]x_i[/mm] an die Stelle von x1 und x1
> anstelle von [mm]x_i.[/mm]
>  5) Fahre mit [mm]x_2[/mm] analog fort (wenn [mm]x_i =x_2[/mm] dann [mm]x_3[/mm]
> etc...).
>  
> Nun bin ich mir jedoch ein wenig unsicher, da ich so die
> größten Abstände bei den Zuordnungen erhalte, welche
> zuletzt geschehen.
>  
> Ich bin mir nicht sicher ob es nicht beispielsweise
> möglich ist anstelle [mm]x_1[/mm] nicht den Wert [mm]x_i[/mm] zu nehmen
> sondern einen Wert [mm]x_j,[/mm] weil bsp. gilt
>  
> [mm](x_1[/mm] - [mm]x_j)^2[/mm] + [mm](x_n[/mm] - [mm]x_i)^2[/mm] < [mm](x_1[/mm] - [mm]x_i)^2[/mm] + [mm](x_n[/mm] -
> [mm]x_j)^2[/mm]
>  
> Ich hoffe ihr versteht was ich meine^^.
>  
>
> Des Weiteren habe ich mir dann gedacht, dass ich einfach
> alle möglichen Kombinationen berechne und dann die
> Zuordnung wähle für welche die Summe der euklidischen
> Distanzen am kleinsten wird.
>  
> Wenn n jedoch recht groß ist, so gibt es leider seeehr
> viele Kombinationsmöglichkeiten nämlich
>  
> [mm]\summe_{i=1}^{n}[/mm] (n-i)!
>  
> Viele
>  
> Grüße
>  Druss

Hallo,
mein Vorschlag: Tausche jeweils
- den größten und zweitgrößten
- den drittgrößten und den viertgrößten
- den fünft- und den sechstgrößten Wert usw.
miteinander aus.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de