www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Unabhängige Zufallsgröße
Unabhängige Zufallsgröße < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängige Zufallsgröße: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Mi 02.06.2010
Autor: RapiTiger

Aufgabe
Gegeben seien zwei unabhängige Zufallsgrößen X und Y, welche dieselbe Verteilung haben. Zeigen Sie: min(X,Y) und max(X,Y) sind genau dann unabhängig, wenn ein x existiert so dass P(X = x) = 1 gilt.

Hallo,

Da die Aufgabe auf dem Blatt für Erwartungswert und Varianz steht, gehe ich mal davon aus, dass es irgendwie damit gelöst werden sollte...
Ich habe mir überlegt (weiß aber nicht, ob bzw mir das helfen kann):
1) E(X) = x * 1 = x
2) V(X) = 0 , irgendwo im Skript steht [mm] \exists [/mm] c [mm] \in \IR: [/mm] P(X = c) = 1
Kann ich die Aufgabe mit dem hier beantworten oder bin ich komplett auf dem falschen Dampfer?
Sitze schon ewig an dieser Aufgabe und komme auf keinen grünen Zweig.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Auf alle Fälle schon mal vielen Dank für die Mühe

        
Bezug
Unabhängige Zufallsgröße: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Do 03.06.2010
Autor: gfm


> Gegeben seien zwei unabhängige Zufallsgrößen X und Y,
> welche dieselbe Verteilung haben. Zeigen Sie: min(X,Y) und
> max(X,Y) sind genau dann unabhängig, wenn ein x existiert
> so dass P(X = x) = 1 gilt.
>  Hallo,
>  
> Da die Aufgabe auf dem Blatt für Erwartungswert und
> Varianz steht, gehe ich mal davon aus, dass es irgendwie
> damit gelöst werden sollte...
> Ich habe mir überlegt (weiß aber nicht, ob bzw mir das
> helfen kann):
>  1) E(X) = x * 1 = x
>  2) V(X) = 0 , irgendwo im Skript steht [mm]\exists[/mm] c [mm]\in \IR:[/mm]
> P(X = c) = 1
>  Kann ich die Aufgabe mit dem hier beantworten oder bin ich
> komplett auf dem falschen Dampfer?
>  Sitze schon ewig an dieser Aufgabe und komme auf keinen
> grünen Zweig.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Auf alle Fälle schon mal vielen Dank für die Mühe

Wenn P(X = c) = 1, dann ist [mm] F_X(s)=1_{I_c}(s) [/mm] mit [mm] I_c:=[c,\infty). [/mm] Dann ist laut Voraussetzung [mm] F_Y(t)=1_{I_c}(t) [/mm] und [mm] F_{X,Y}(s,t)=1_{I_c}(s)1_{I_c}(t) [/mm]

Mit U:=Min(X,Y) und V=Max(X,Y) ist dann

[mm] F_{U}(p)=\integral 1_{I_p}(Min(s,t))dF_{X,Y}(s,t) [/mm]
[mm] F_{V}(q)=\integral 1_{I_q}(Max(s,t))dF_{X,Y}(s,t) [/mm]
[mm] F_{U,V}(p,q)=\integral 1_{I_p}(Min(s,t))1_{I_q}(Max(s,t))dF_{X,Y}(s,t) [/mm]

Die Auswertung sollte die Unabhängigkeit von U und V offenlegen.

Die andere Richtung habe ich mir noch nicht überlegt.

LG

gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de