www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Unabhängigkeit
Unabhängigkeit < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 25.08.2014
Autor: Mathics

Aufgabe
A,B,C, und D seien beliebige Ereignisse.
A,B,C,D seien unabhängig. Welche Ereignisse sind dann nicht stets unabhängig.

a) A [mm] \cap [/mm] B und B [mm] \cap [/mm] C
b) A und B [mm] \cap [/mm] C
c) A \ D und [mm] \overline{B} [/mm]

Hallo,

ich habe

a) P (A [mm] \cap [/mm] B | B [mm] \cap [/mm] C) = P (A [mm] \cap [/mm] B [mm] \cap [/mm] C) / P (B [mm] \cap [/mm] C) = P(A)
Hier also nicht unabhängig!

b) P (A | B [mm] \cap [/mm] C) = P (A [mm] \cap [/mm] B [mm] \cap [/mm] C) / P (B [mm] \cap [/mm] C) = P(A)
Hier unabhängig!

c) P (A \ D | [mm] \overline{B}) [/mm] = P (A \ D [mm] \cap \overline{B}) [/mm] / P [mm] (\overline{B}) [/mm] = P(A \ D)
Hier unabhängig!


Ist das wohl so richtig argumentiert?


LG
Mathics

        
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Mo 25.08.2014
Autor: luis52

Moin, du unterstellst bei allen Argumenten, dass die Nenner der bedingten Wahrscheinlichkeiten nicht Null sind. So kannst du das nicht beweisen.

Im ersten Fall ist zu zeigen: $P ((A  [mm] \cap B)\cap( [/mm] B [mm] \cap [/mm]  C))=P (A  [mm] \cap B)\cdot [/mm] P( B [mm] \cap [/mm]  C)$. Dazu musst du ausnutzen, was es bedeutet, dass die Ereignisse $A,B,C,D$ unabhaengig sind. Naemlich was?

Bezug
                
Bezug
Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Mo 25.08.2014
Autor: Mathics


> Im ersten Fall ist zu zeigen: [mm]P ((A \cap B)\cap( B \cap C))=P (A \cap B)\cdot P( B \cap C)[/mm].
> Dazu musst du ausnutzen, was es bedeutet, dass die
> Ereignisse [mm]A,B,C,D[/mm] unabhaengig sind. Naemlich was?

Das heißt dann P (A  [mm] \cap [/mm]  B [mm] \cap [/mm] C [mm] \cap [/mm] D) = P(A)*P(B)*P(C)*P(D). Aber wie hilft mir das weiter?

Bezug
                        
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mo 25.08.2014
Autor: luis52


> > Im ersten Fall ist zu zeigen: [mm]P ((A \cap B)\cap( B \cap C))=P (A \cap B)\cdot P( B \cap C)[/mm].
> > Dazu musst du ausnutzen, was es bedeutet, dass die
> > Ereignisse [mm]A,B,C,D[/mm] unabhaengig sind. Naemlich was?
>
> Das heißt dann P (A  [mm]\cap[/mm]  B [mm]\cap[/mm] C [mm]\cap[/mm] D) =
> P(A)*P(B)*P(C)*P(D). Aber wie hilft mir das weiter?

Gar nichts, denn das ist falsch. Unabhaengigkeit bedeutet, dass fuer *jede* Teilmenge von [mm] $\{A,B,C,D\}$ [/mm] obige Formel sinngemaess gilt. Z.B. ist [mm] $P(A\cap C)=P(A)\cdot [/mm] P(C)$ oder [mm] $P(A\cap C\cap D)=P(A)\cdot P(C)\cdot [/mm] P(D)$.


Bezug
                                
Bezug
Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Di 26.08.2014
Autor: Mathics


> > Das heißt dann P (A  [mm]\cap[/mm]  B [mm]\cap[/mm] C [mm]\cap[/mm] D) =
> > P(A)*P(B)*P(C)*P(D). Aber wie hilft mir das weiter?

> Gar nichts, denn das ist falsch. Unabhaengigkeit bedeutet,
> dass fuer *jede* Teilmenge von [mm]\{A,B,C,D\}[/mm] obige Formel
> sinngemaess gilt. Z.B. ist [mm]P(A\cap C)=P(A)\cdot P(C)[/mm] oder
> [mm]P(A\cap C\cap D)=P(A)\cdot P(C)\cdot P(D)[/mm].
>  


Ich bin jetzt etwas verwirrt, denn in unserer Formelsammlung steht wenn A1, A2, A3, A4 unabhängig sind, dann gilt: P(A1 [mm] \cap [/mm] A2 [mm] \cap [/mm] A3 [mm] \cap [/mm] A4) = P(A1)*P(A2)*P(A3)*P(A4)


LG
Mathics

Bezug
                                        
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Di 26.08.2014
Autor: MaslanyFanclub

Hallo,

> > > Das heißt dann P (A  [mm]\cap[/mm]  B [mm]\cap[/mm] C [mm]\cap[/mm] D) =
> > > P(A)*P(B)*P(C)*P(D). Aber wie hilft mir das weiter?
>
> > Gar nichts, denn das ist falsch. Unabhaengigkeit bedeutet,
> > dass fuer *jede* Teilmenge von [mm]\{A,B,C,D\}[/mm] obige Formel
> > sinngemaess gilt. Z.B. ist [mm]P(A\cap C)=P(A)\cdot P(C)[/mm] oder
> > [mm]P(A\cap C\cap D)=P(A)\cdot P(C)\cdot P(D)[/mm].
> >  

>
>
> Ich bin jetzt etwas verwirrt, denn in unserer
> Formelsammlung steht wenn A1, A2, A3, A4 unabhängig sind,
> dann gilt: P(A1 [mm]\cap[/mm] A2 [mm]\cap[/mm] A3 [mm]\cap[/mm] A4) =
> P(A1)*P(A2)*P(A3)*P(A4)
>  

Das steht in keinem Widerspruch zur Definition.
Das was du schreibst ist eine Folgerung (Implikation) oder auch notwendige Bedingung. "wenn, ... dann"
Die Bedingung ist aber nicht hinreichend, sprich der Begriff der Unabhängigkeit einer Menge verlangt noch mehr, nämlich die Def. die luis52 schrieb.

> LG
>  Mathics


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de