www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Unabhängigkeit bei Vektoräumen
Unabhängigkeit bei Vektoräumen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit bei Vektoräumen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:54 So 15.05.2005
Autor: Mato

Hallo!
Ich brauche Hilfe bei folgender Aufgabe
Aufg.:
3 [mm] x^{5}+2 x^{2}+x-8 [/mm] ist ein Vektor des Vektorraumes der Polynome maximal 5. Grades. Stellen Sie diesen Vektor als Linearkombination von zwei linear unabhängigen Vektoren dar!
Mein Ansatz:
3 [mm] x^{5}+2 x^{2}+x-8= \vec{c} [/mm]
und  [mm] \vec{c}= \vec{a}+ \vec{b} \gdw \vec{a}+ \vec{b}-\vec{c}= [/mm] 0
Mein Ansatz geht noch ein bisschen weiter, aber vielleicht ist er auch völlig falsch, jedenfalls komme ich nicht weiter.
Ich bedanke mich im voraus für eure Hilfe!

        
Bezug
Unabhängigkeit bei Vektoräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 So 15.05.2005
Autor: Sigrid

Hallo Mato,

> Hallo!
> Ich brauche Hilfe bei folgender Aufgabe
>  Aufg.:
>  3 [mm]x^{5}+2 x^{2}+x-8[/mm] ist ein Vektor des Vektorraumes der
> Polynome maximal 5. Grades. Stellen Sie diesen Vektor als
> Linearkombination von zwei linear unabhängigen Vektoren
> dar!
>  Mein Ansatz:
>  3 [mm]x^{5}+2 x^{2}+x-8= \vec{c}[/mm]
> und  [mm]\vec{c}= \vec{a}+ \vec{b} \gdw \vec{a}+ \vec{b}-\vec{c}=[/mm]
> 0
>  Mein Ansatz geht noch ein bisschen weiter, aber vielleicht
> ist er auch völlig falsch, jedenfalls komme ich nicht
> weiter.

Ich weiß nicht, welche Vektoren du mit [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] bezeichnest. Die Vektoren müssen Polynome maximal 5. Grades sein und linear unabhängig, d.h. kein Vektor darf das Null-Polynom sein und du darfst das 2. Polynom nicht durch Multiplikation des 1. mit einer reellen Zahl erhalten. Die Summe muss natürlich, wie du ja schon gesehen hast, dein Polynom [mm] \vec{c} [/mm] sein.
Es gibt eine Fülle von Lösungen. Am besten suchst du dir selbst eine und gibst sie hier an, dann bekommst du sicher eine Rückmeldung, ob du richtig liegst.

Gruß
Sigrid

>  Ich bedanke mich im voraus für eure Hilfe!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de