www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Unabhängigkeit von ZVA
Unabhängigkeit von ZVA < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit von ZVA: Hilfe bei Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:17 Sa 28.07.2012
Autor: Dicen

Aufgabe
Seien (Ω, 2Ω , P ) ein diskreter Wahrscheinlichkeitsraum und X : Ω → {0, 1, . . . , 10} Laplace-verteilt. Desweiteren sei Y = 25 − (X − [mm] 5)^2 [/mm] . Uberpr üfen Sie die Zufallsvariablen X und Y auf Unkorreliertheit und Unabhängigkeit.


Hey, ich bins wieder. :D

Also, das ist eine Übungsaufgabe, die wir vor längerem besprochen haben und mir ist nicht ganz klar, wieso die Lösung so aussieht, wie sie es tut.

Also Unkorreliertheit haben wir gezeigt, kein Problem.
Aber am Ende steht bei der Unabhängigkeit: [mm] P(Y=0|X=0)=$\frac{2/11*1/11}{1/11}=|=P(X=0)*P(Y=0)$ [/mm]

Irgedwie zeigt man damit doch nichts habe ich den Eindruck und wenn P(Y=0,X=0) wirklich aussehen würde, dann wären zumindest die Ereignisse Y=0 und X=0 unabhängig, da P(Y=0|X=0)=P(Y=0) wäre.

Ich hätte folgendes gemacht: P(X=0, Y=0)=1/11 (das es nur 11 Tupel gibt, die Auftreten können: (0,0),(1,9),(2,16),(3,21),(4,24),(5,25),(6,24),(7,21),(8,16),(9,1),(10,0) ) und P(Y=0)*P(X=0)=2/11*1/11.

Ich hoffe ihr könnt meine Verwirrung auflösen. :)

        
Bezug
Unabhängigkeit von ZVA: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Sa 28.07.2012
Autor: blascowitz

Hallo
> Seien (Ω, 2Ω , P ) ein diskreter Wahrscheinlichkeitsraum
> und X : Ω → {0, 1, . . . , 10} Laplace-verteilt.
> Desweiteren sei Y = 25 − (X − [mm] 5)^2 [/mm] . Uberpr üfen Sie
> die Zufallsvariablen X und Y auf Unkorreliertheit und
> Unabhängigkeit.
>  Hey, ich bins wieder. :D
>  

Ich habe mal die Aufgabe editiert(zumindest so wie ich sie mir denke, ich habe ein Quadrat eingefügt)

> Also, das ist eine Übungsaufgabe, die wir vor längerem
> besprochen haben und mir ist nicht ganz klar, wieso die
> Lösung so aussieht, wie sie es tut.
>  
> Also Unkorreliertheit haben wir gezeigt, kein Problem.
>  Aber am Ende steht bei der Unabhängigkeit:
> P(Y=0|X=0)=[mm]\frac{2/11*1/11}{1/11}=|=P(X=0)*P(Y=0)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  

Wie man darauf kommt, ist mir auch schleierhaft. Es gilt doch
$\left\lbrace {\omega \in \Omega \;  \middle| \; X(\omega)=0\right\rbrace \subseteq \left\lbrace {\omega \in \Omega \;  \middle| \; Y(\omega)=0\right\rbrace$
Was ist dann $P(X=0 \cap Y=0)$ und was bedeutet dies für die bedingte Wahrscheinlichkeit $P(Y=0 \; | \; X=0)$?


> Irgedwie zeigt man damit doch nichts habe ich den Eindruck
> und wenn P(Y=0,X=0) wirklich aussehen würde, dann wären
> zumindest die Ereignisse Y=0 und X=0 unabhängig, da
> P(Y=0|X=0)=P(Y=0) wäre.
>  
> Ich hätte folgendes gemacht: P(X=0, Y=0)=1/11 (das es nur
> 11 Tupel gibt, die Auftreten können:
> (0,0),(1,9),(2,16),(3,21),(4,24),(5,25),(6,24),(7,21),(8,16),(9,1),(10,0)
> ) und P(Y=0)*P(X=0)=2/11*1/11.
>  
> Ich hoffe ihr könnt meine Verwirrung auflösen. :)

Viele Grüße
Blasco

Bezug
                
Bezug
Unabhängigkeit von ZVA: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Sa 28.07.2012
Autor: Dicen


> Hallo
>  > Seien (Ω, 2Ω , P ) ein diskreter

> Wahrscheinlichkeitsraum
> > und X : Ω → {0, 1, . . . , 10} Laplace-verteilt.
> > Desweiteren sei Y = 25 − (X − [mm]5)^2[/mm] . Uberpr üfen Sie
> > die Zufallsvariablen X und Y auf Unkorreliertheit und
> > Unabhängigkeit.
>  >  Hey, ich bins wieder. :D
>  >  
> Ich habe mal die Aufgabe editiert(zumindest so wie ich sie
> mir denke, ich habe ein Quadrat eingefügt)

Ja, mit Quadrat! Tut mir Leid, hab ich verschwitzt.

>  > Also, das ist eine Übungsaufgabe, die wir vor längerem

> > besprochen haben und mir ist nicht ganz klar, wieso die
> > Lösung so aussieht, wie sie es tut.
>  >  
> > Also Unkorreliertheit haben wir gezeigt, kein Problem.
>  >  Aber am Ende steht bei der Unabhängigkeit:
> > P(Y=0|X=0)=[mm]\frac{2/11*1/11}{1/11}=|=P(X=0)*P(Y=0)[/mm]
>  >  
> Wie man darauf kommt, ist mir auch schleierhaft. Es gilt
> doch
>  [mm]\left\lbrace {\omega \in \Omega \; \middle| \; X(\omega)=0\right\rbrace \subseteq \left\lbrace {\omega \in \Omega \; \middle| \; Y(\omega)=0\right\rbrace[/mm]
> Was ist dann [mm]P(X=0 \cap Y=0)[/mm] und was bedeutet dies für die
> bedingte Wahrscheinlichkeit [mm]P(Y=0 \; | \; X=0)[/mm]?

Nunja die bedingte Wahrscheinlichkeit ist halt 1. Wenn X=0 schon eingetroffen, dann folgt "automatisch", dass Y=0.
Rechnerisch ist das sowas wie: [mm] $P(Y=0|X=0)=\frac{P(Y=0,X=0)}{P(X=0)}$. [/mm] Und wenn meine Überlegungen zu P(Y=0,X=0) gestimmt haben, wäre das nunmal [mm] $=\frac{1/11}{1/11}=1$. [/mm]

Nicht wahr?
Daraus folgt dann $P(Y=0|X=0)=1$, aber $P(Y=0)=2/11$ und daher gibt es ein Ereignis, für das X und Y abhängig sind.

Passt das so?

Bezug
                        
Bezug
Unabhängigkeit von ZVA: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 So 29.07.2012
Autor: blascowitz


> > Hallo
>  >  > Seien (Ω, 2Ω , P ) ein diskreter

> > Wahrscheinlichkeitsraum
> > > und X : Ω → {0, 1, . . . , 10} Laplace-verteilt.
> > > Desweiteren sei Y = 25 − (X − [mm]5)^2[/mm] . Uberpr üfen Sie
> > > die Zufallsvariablen X und Y auf Unkorreliertheit und
> > > Unabhängigkeit.
>  >  >  Hey, ich bins wieder. :D
>  >  >  
> > Ich habe mal die Aufgabe editiert(zumindest so wie ich sie
> > mir denke, ich habe ein Quadrat eingefügt)
>  
> Ja, mit Quadrat! Tut mir Leid, hab ich verschwitzt.
>  
> >  > Also, das ist eine Übungsaufgabe, die wir vor längerem

> > > besprochen haben und mir ist nicht ganz klar, wieso die
> > > Lösung so aussieht, wie sie es tut.
>  >  >  
> > > Also Unkorreliertheit haben wir gezeigt, kein Problem.
>  >  >  Aber am Ende steht bei der Unabhängigkeit:
> > > P(Y=0|X=0)=[mm]\frac{2/11*1/11}{1/11}=|=P(X=0)*P(Y=0)[/mm]
>  >  >  
> > Wie man darauf kommt, ist mir auch schleierhaft. Es gilt
> > doch
>  >  [mm]\left\lbrace {\omega \in \Omega \; \middle| \; X(\omega)=0\right\rbrace \subseteq \left\lbrace {\omega \in \Omega \; \middle| \; Y(\omega)=0\right\rbrace[/mm]
> > Was ist dann [mm]P(X=0 \cap Y=0)[/mm] und was bedeutet dies für die
> > bedingte Wahrscheinlichkeit [mm]P(Y=0 \; | \; X=0)[/mm]?
>  
> Nunja die bedingte Wahrscheinlichkeit ist halt 1. Wenn X=0
> schon eingetroffen, dann folgt "automatisch", dass Y=0.
>  Rechnerisch ist das sowas wie:
> [mm]P(Y=0|X=0)=\frac{P(Y=0,X=0)}{P(X=0)}[/mm]. Und wenn meine
> Überlegungen zu P(Y=0,X=0) gestimmt haben, wäre das
> nunmal [mm]=\frac{1/11}{1/11}=1[/mm].

Nein, die Wahrscheinlichkeit $P(X=0, Y=0)$ ist nicht 1, denk darüber nochmal nach.

>  
> Nicht wahr?
>  Daraus folgt dann [mm]P(Y=0|X=0)=1[/mm], aber [mm]P(Y=0)=2/11[/mm] und daher
> gibt es ein Ereignis, für das X und Y abhängig sind.
>  
> Passt das so?

Du musst zeigen, dass
[mm] $P(X=0,Y=0)\not=P(X=0) \cdot [/mm] P(Y=0)$
Ich fang mal an mit
$P(X=0,Y=0)=P(Y=0 [mm] \; [/mm] | [mm] \; X=0)\cdot P(X=0)=\hdots$ [/mm]
Und jetzt du weiter

Eine gute Nacht
Blasco

Bezug
                                
Bezug
Unabhängigkeit von ZVA: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 So 29.07.2012
Autor: Dicen


> > > Hallo
>  >  >  > Seien (Ω, 2Ω , P ) ein diskreter

> > > Wahrscheinlichkeitsraum
> > > > und X : Ω → {0, 1, . . . , 10} Laplace-verteilt.
> > > > Desweiteren sei Y = 25 − (X − [mm]5)^2[/mm] . Uberpr üfen Sie
> > > > die Zufallsvariablen X und Y auf Unkorreliertheit und
> > > > Unabhängigkeit.
>  >  >  >  Hey, ich bins wieder. :D
>  >  >  >  
> > > Ich habe mal die Aufgabe editiert(zumindest so wie ich sie
> > > mir denke, ich habe ein Quadrat eingefügt)
>  >  
> > Ja, mit Quadrat! Tut mir Leid, hab ich verschwitzt.
>  >  
> > >  > Also, das ist eine Übungsaufgabe, die wir vor längerem

> > > > besprochen haben und mir ist nicht ganz klar, wieso die
> > > > Lösung so aussieht, wie sie es tut.
>  >  >  >  
> > > > Also Unkorreliertheit haben wir gezeigt, kein Problem.
>  >  >  >  Aber am Ende steht bei der Unabhängigkeit:
> > > > P(Y=0|X=0)=[mm]\frac{2/11*1/11}{1/11}=|=P(X=0)*P(Y=0)[/mm]
>  >  >  >  
> > > Wie man darauf kommt, ist mir auch schleierhaft. Es gilt
> > > doch
>  >  >  [mm]\left\lbrace {\omega \in \Omega \; \middle| \; X(\omega)=0\right\rbrace \subseteq \left\lbrace {\omega \in \Omega \; \middle| \; Y(\omega)=0\right\rbrace[/mm]
> > > Was ist dann [mm]P(X=0 \cap Y=0)[/mm] und was bedeutet dies für die
> > > bedingte Wahrscheinlichkeit [mm]P(Y=0 \; | \; X=0)[/mm]?
>  >  
> > Nunja die bedingte Wahrscheinlichkeit ist halt 1. Wenn X=0
> > schon eingetroffen, dann folgt "automatisch", dass Y=0.
>  >  Rechnerisch ist das sowas wie:
> > [mm]P(Y=0|X=0)=\frac{P(Y=0,X=0)}{P(X=0)}[/mm]. Und wenn meine
> > Überlegungen zu P(Y=0,X=0) gestimmt haben, wäre das
> > nunmal [mm]=\frac{1/11}{1/11}=1[/mm].
>  
> Nein, die Wahrscheinlichkeit [mm]P(X=0, Y=0)[/mm] ist nicht 1, denk
> darüber nochmal nach.

Das habe ich ja auch nicht gesagt, sondern ich meinte die Wahrscheinlichkeit zu P(Y=0|X=0) ist 1.

>  >  
> > Nicht wahr?
>  >  Daraus folgt dann [mm]P(Y=0|X=0)=1[/mm], aber [mm]P(Y=0)=2/11[/mm] und
> daher
> > gibt es ein Ereignis, für das X und Y abhängig sind.
>  >  
> > Passt das so?
> Du musst zeigen, dass
> [mm]P(X=0,Y=0)\not=P(X=0) \cdot P(Y=0)[/mm]
>  Ich fang mal an mit
>  [mm]P(X=0,Y=0)=P(Y=0 \; | \; X=0)\cdot P(X=0)=\hdots[/mm]
> Und jetzt du weiter
>  
> Eine gute Nacht
> Blasco

Ja ok, also P(X=0)*P(Y=0)= 2/121.
P(X=0, Y=0)=P(Y=0|X=0)*(P(X=0)=1*1/11=1/11 und das ist undgleich P(X=0)*P(Y=0), nicht wahr?


Bezug
                                        
Bezug
Unabhängigkeit von ZVA: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 So 29.07.2012
Autor: blascowitz


> > > > Hallo
>  >  >  >  > Seien (Ω, 2Ω , P ) ein diskreter

> > > > Wahrscheinlichkeitsraum
> > > > > und X : Ω → {0, 1, . . . , 10} Laplace-verteilt.
> > > > > Desweiteren sei Y = 25 − (X − [mm]5)^2[/mm] . Uberpr üfen Sie
> > > > > die Zufallsvariablen X und Y auf Unkorreliertheit und
> > > > > Unabhängigkeit.
>  >  >  >  >  Hey, ich bins wieder. :D
>  >  >  >  >  
> > > > Ich habe mal die Aufgabe editiert(zumindest so wie ich sie
> > > > mir denke, ich habe ein Quadrat eingefügt)
>  >  >  
> > > Ja, mit Quadrat! Tut mir Leid, hab ich verschwitzt.
>  >  >  
> > > >  > Also, das ist eine Übungsaufgabe, die wir vor längerem

> > > > > besprochen haben und mir ist nicht ganz klar, wieso die
> > > > > Lösung so aussieht, wie sie es tut.
>  >  >  >  >  
> > > > > Also Unkorreliertheit haben wir gezeigt, kein Problem.
>  >  >  >  >  Aber am Ende steht bei der Unabhängigkeit:
> > > > > P(Y=0|X=0)=[mm]\frac{2/11*1/11}{1/11}=|=P(X=0)*P(Y=0)[/mm]
>  >  >  >  >  
> > > > Wie man darauf kommt, ist mir auch schleierhaft. Es gilt
> > > > doch
>  >  >  >  [mm]\left\lbrace {\omega \in \Omega \; \middle| \; X(\omega)=0\right\rbrace \subseteq \left\lbrace {\omega \in \Omega \; \middle| \; Y(\omega)=0\right\rbrace[/mm]
> > > > Was ist dann [mm]P(X=0 \cap Y=0)[/mm] und was bedeutet dies für die
> > > > bedingte Wahrscheinlichkeit [mm]P(Y=0 \; | \; X=0)[/mm]?
>  >  >

>  
> > > Nunja die bedingte Wahrscheinlichkeit ist halt 1. Wenn X=0
> > > schon eingetroffen, dann folgt "automatisch", dass Y=0.
>  >  >  Rechnerisch ist das sowas wie:
> > > [mm]P(Y=0|X=0)=\frac{P(Y=0,X=0)}{P(X=0)}[/mm]. Und wenn meine
> > > Überlegungen zu P(Y=0,X=0) gestimmt haben, wäre das
> > > nunmal [mm]=\frac{1/11}{1/11}=1[/mm].
>  >  
> > Nein, die Wahrscheinlichkeit [mm]P(X=0, Y=0)[/mm] ist nicht 1, denk
> > darüber nochmal nach.
>  
> Das habe ich ja auch nicht gesagt, sondern ich meinte die
> Wahrscheinlichkeit zu P(Y=0|X=0) ist 1.
>  
> >  >  

> > > Nicht wahr?
>  >  >  Daraus folgt dann [mm]P(Y=0|X=0)=1[/mm], aber [mm]P(Y=0)=2/11[/mm] und
> > daher
> > > gibt es ein Ereignis, für das X und Y abhängig sind.
>  >  >  
> > > Passt das so?
> > Du musst zeigen, dass
> > [mm]P(X=0,Y=0)\not=P(X=0) \cdot P(Y=0)[/mm]
>  >  Ich fang mal an
> mit
>  >  [mm]P(X=0,Y=0)=P(Y=0 \; | \; X=0)\cdot P(X=0)=\hdots[/mm]
> > Und jetzt du weiter
>  >  
> > Eine gute Nacht
> > Blasco
>
> Ja ok, also P(X=0)*P(Y=0)= 2/121.
>  P(X=0, Y=0)=P(Y=0|X=0)*(P(X=0)=1*1/11=1/11 und das ist
> undgleich P(X=0)*P(Y=0), nicht wahr?

Ja wenn man sich überlegt, dass [mm] $P(Y=0)\not=1$ [/mm] ist, dann stimmt das so.

Viele Grüße und einen schönen Sonntag

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de