www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Unbestimmtes Integral
Unbestimmtes Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 So 21.02.2010
Autor: fred937

Aufgabe
Lösen Sie das Integral (parielle Integration):
[mm] \integral_{}^{}{arctan x dx} [/mm]

Hi und danke für das Interesse,

Kann ich den arctan irgendwie aufspalten so wie das bei cos/sin geht?
Ich weiß nicht wie ich da herangehen soll....
Die Lösung ist: x arctan x [mm] -\bruch{1}{2} [/mm] ln [mm] (1+x^{2})+C [/mm]

        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 So 21.02.2010
Autor: schachuzipus

Hallo fred937,

> Lösen Sie das Integral (parielle Integration):
>  [mm]\integral_{}^{}{arctan x dx}[/mm]
>  Hi und danke für das
> Interesse,
>  
> Kann ich den arctan irgendwie aufspalten so wie das bei
> cos/sin geht?

Das ist derselbe "Trick", der auch für das Integral [mm] $\int{\ln(x) \ dx}$ [/mm] funktioniert.

Schreibe [mm] $\int{\arctan(x) \ dx}=\int{\red{1}\cdot{}\arctan(x) \ dx}$ [/mm] und setze $u'(x)=1$ und [mm] $v(x)=\arctan(x)$ [/mm]

Dann ist mit p.I.: [mm] $\int{u'(x)\cdot{}v(x) \ dx}=u(x)\cdot{}v(x)-\int{u(x)\cdot{}v'(x) \ dx}$ [/mm]

Um im weiteren das durch die p.I. entstehende Integral [mm] $\int{u(x)\cdot{}v'(x) \ dx}$ [/mm] zu lösen, ist eine kleine Substitution angesagt.

(Oder du erinnerst dich an die logarithmischen Integrale, also diejenigen der Bauart [mm] $\int{\frac{f'(x)}{f(x)} \ dx}$ [/mm] - die haben eine stadtbekannte Stfk.)

>  Ich weiß nicht wie ich da herangehen soll....
>  Die Lösung ist: x arctan x [mm]-\bruch{1}{2}[/mm] ln [mm](1+x^{2})+C[/mm]  

Gruß

schachuzipus

Bezug
                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 So 21.02.2010
Autor: fred937

Vielen Dank,

mit der Substitution hats geklappt. [mm] (t=1+x^{2}) [/mm]

Aber den anderen Weg hab ich jetzt nicht gefunden, scheint nicht meine Stadt zu sein.

Bezug
                        
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 So 21.02.2010
Autor: schachuzipus

Hallo nochmal,

> Vielen Dank,
>
> mit der Substitution hats geklappt. [mm](t=1+x^{2})[/mm] [ok]
>  
> Aber den anderen Weg hab ich jetzt nicht gefunden, scheint
> nicht meine Stadt zu sein.  ;-)

Nun, das Integral [mm] $\int{\frac{f'(x)}{f(x)} \ dx}$ [/mm] lässt sich über die Substitution $t=t(x):=f(x)$ lösen zu [mm] $\ln(|f(x)|)$ [/mm]

Damit hast du eine allgemeine Formel

Du hast im hinteren Integral nach der p.I. stehen: [mm] $-\int{\frac{x}{x^2+1} \dx}$ [/mm]

Das kannst du etwas umformen zu [mm] $-\frac{1}{2}\cdot{}\int{\frac{2x}{x^2+1} \ dx}$ [/mm]

Nun hast du genau die Ableitung des Nenners im Zähler und kannst mit dem allg. Wissen über diese Art von Integralen direkt sagen, dass eine Stfk.

[mm] $-\frac{1}{2}\cdot{}\ln(|x^2+1|)+C=-\frac{1}{2}\ln(x^2+1)+C$ [/mm] ist.


LG

schachuzipus


Bezug
                                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:34 Mo 22.02.2010
Autor: fred937

Ah ja, vielen Dank nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de