www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Unbestimmtes Integral
Unbestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:28 So 31.03.2013
Autor: piriyaie

Aufgabe
[mm] f(x)=\bruch{3x+2}{x^{2}+2x+2} [/mm]

Hallo,

ich möchte für die obige Funktion das unbestimmte Integral finden. Ich komme aber schon ab dem ersten Schritt nimma weiter :-(

Also ich komme soweit:

[mm] \integral \bruch{3x+2}{x^{2}+2x+2} [/mm] dx = ???

Was muss ich dann machen???

Danke schonmal.

Grüße
Ali

        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 So 31.03.2013
Autor: MathePower

Hallo piriyaie,

> [mm]f(x)=\bruch{3x+2}{x^{2}+2x+2}[/mm]
>  Hallo,
>  
> ich möchte für die obige Funktion das unbestimmte
> Integral finden. Ich komme aber schon ab dem ersten Schritt
> nimma weiter :-(
>  
> Also ich komme soweit:
>  
> [mm]\integral \bruch{3x+2}{x^{2}+2x+2}[/mm] dx = ???
>  
> Was muss ich dann machen???
>  


Zerlege den Zähler des Integranden zunächst so:

[mm]3x+2=\alpha*\left(x^{2}+2x+2\right)'+r\left(x\right)[/mm]

,wobei [mm]\alpha[/mm] so zu wählen ist,
daß [mm]r\left(x\right)[/mm] eine Konstante ist.


> Danke schonmal.
>  
> Grüße
>  Ali


Gruss
MathePower

Bezug
                
Bezug
Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 So 31.03.2013
Autor: piriyaie

Boah tut mir leid... aber das verstehe ich nicht :-(

Also ich muss das ganze irgendwie erweitern... oder? Sodass der Zähler die Ableitung vom Nenner ist. Oder?

Aber wie mache ich das genau???

Bezug
                        
Bezug
Unbestimmtes Integral: umformen
Status: (Antwort) fertig Status 
Datum: 19:02 So 31.03.2013
Autor: Loddar

Hallo Ali!


Es gilt:

[mm]\bruch{3x+2}{x^2+2x+2} \ = \ \bruch{3x+3-1}{x^2+2x+2} \ = \ \bruch{3x+3}{x^2+2x+2}-\bruch{1}{x^2+2x+2} \ = \ \bruch{3}{2}*\bruch{2x+2}{x^2+2x+2}-\bruch{1}{x^2+2x+1+1}[/mm]

Beim vorderen Bruch hast du nun im Zähler exakt die Ableitung des Nenners.
Beim hinteren Bruch im Nenner eine binomsiche Formel auf teile des Nenners anwenden. anschließend sollte einem eine bekannte Stammfunktion mit [mm]\arctan(...)[/mm] einfallen.


Gruß
Loddar

Bezug
                                
Bezug
Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 So 31.03.2013
Autor: piriyaie

Wie kommst du beim letzten Schritt auf dieses hier:

[mm] \bruch{3}{2}\cdot{}\bruch{2x+2}{x^2+2x+2} [/mm]

???

Bezug
                                        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 So 31.03.2013
Autor: abakus


> Wie kommst du beim letzten Schritt auf dieses hier:

>

> [mm]\bruch{3}{2}\cdot{}\bruch{2x+2}{x^2+2x+2}[/mm]

Hallo,
Ziel der Übung ist es, im Zähler die Ableitung des Nenners zu erhalten (also 2x+2)
Deshalb hat man aus dem bisherigen Zähler 3x+3 den Faktor [mm]\frac32[/mm] ausgeklammert:
 [mm]3x+3=\frac32*(2x+2)[/mm] .
Gruß Abakus
>

> ???

Bezug
                                                
Bezug
Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 So 31.03.2013
Autor: piriyaie

Also soweit komme ich jetzt:

[mm] \integral \bruch{3x+2}{x^{2}+2x+2} [/mm] dx = [mm] \integral \bruch{3x+3-1}{x^{2}+2x+2} [/mm] dx = [mm] \integral \bruch{3x+3}{x^{2}+2x+2} [/mm] - [mm] \bruch{1}{x^{2}+2x+2} [/mm] dx = [mm] \bruch{3}{2}*\integral \bruch{2x+2}{x^{2}+2x+2} [/mm] dx - [mm] \integral \bruch{1}{x^{2}+2x+2} [/mm] dx = [mm] \bruch{3}{2} ln|x^{2}+2x+2| [/mm] - ????

Also irgendwas mit arctan(???) müsste jezt doch noch dastehen... aber was genau??? wie komme ich da drauf??

Grüße
Ali

Bezug
                                                        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 So 31.03.2013
Autor: MathePower

Hallo piriyaie,

> Also soweit komme ich jetzt:
>  
> [mm]\integral \bruch{3x+2}{x^{2}+2x+2}[/mm] dx = [mm]\integral \bruch{3x+3-1}{x^{2}+2x+2}[/mm]
> dx = [mm]\integral \bruch{3x+3}{x^{2}+2x+2}[/mm] -
> [mm]\bruch{1}{x^{2}+2x+2}[/mm] dx = [mm]\bruch{3}{2}*\integral \bruch{2x+2}{x^{2}+2x+2}[/mm]
> dx - [mm]\integral \bruch{1}{x^{2}+2x+2}[/mm] dx = [mm]\bruch{3}{2} ln|x^{2}+2x+2|[/mm]
> - ????
>  
> Also irgendwas mit arctan(???) müsste jezt doch noch
> dastehen... aber was genau??? wie komme ich da drauf??
>  


Schreibe den Integranden zunächst so:

[mm]\integral \bruch{1}{x^{2}+2x+2} \ dx=\integral \bruch{1}{\left(x+1\right)^{2}+1} \ dx[/mm]

Wende dann die Substitution [mm]x+1=\tan\left(z\right)[/mm] an.


> Grüße
>  Ali


Gruss
MathePower

Bezug
                                                                
Bezug
Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Mo 01.04.2013
Autor: piriyaie

Gestern hat mich Mathe nurnoch gnervt. Deswegen erst heute die Lösung.

Also hier mein Lösungsvorschlag:

... [mm] \bruch{3}{2} ln|x^{2}+2x+2| [/mm] - [mm] \integral \bruch{1}{x^{2}+2x+2} [/mm] dx = [mm] \bruch{3}{2} ln|x^{2}+2x+2| [/mm] - [mm] \integral \bruch{1}{(x+1)^{2}+1} [/mm] dx = [mm] \bruch{3}{2} ln|x^{2}+2x+2| [/mm] - [mm] \integral \bruch{1}{t^{2}+1} [/mm] dx = [mm] \bruch{3}{2} ln|x^{2}+2x+2| [/mm] - arctan(t) = [mm] \bruch{3}{2} ln|x^{2}+2x+2| [/mm] - arctan(x+1)

Also ich habe so Substituiert:

(x+1)=t


Ist das richtig?????


Grüße
Ali

Bezug
                                                                        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Mo 01.04.2013
Autor: notinX

Hallo,

> Gestern hat mich Mathe nurnoch gnervt. Deswegen erst heute
> die Lösung.
>  
> Also hier mein Lösungsvorschlag:
>  
> ... [mm]\bruch{3}{2} ln|x^{2}+2x+2|[/mm] - [mm]\integral \bruch{1}{x^{2}+2x+2}[/mm]
> dx = [mm]\bruch{3}{2} ln|x^{2}+2x+2|[/mm] - [mm]\integral \bruch{1}{(x+1)^{2}+1}[/mm]
> dx = [mm]\bruch{3}{2} ln|x^{2}+2x+2|[/mm] - [mm]\integral \bruch{1}{t^{2}+1}[/mm]
> dx = [mm]\bruch{3}{2} ln|x^{2}+2x+2|[/mm] - arctan(t) = [mm]\bruch{3}{2} ln|x^{2}+2x+2|[/mm]
> - arctan(x+1)

[ok]

>  
> Also ich habe so Substituiert:
>  
> (x+1)=t
>  
>
> Ist das richtig?????

Also ohne Deine Rechenschritte überprüft zu haben, das Ergebnis stimmt jedenfalls. Das kannst Du übrigens leicht selbst überprüfen mit wolframalpha.com

>  
>
> Grüße
>  Ali

Gruß,

notinX


P.S.: Ach ja, eine additive Integrationskonstante fehlt noch wenn man es genau nimmt.

Bezug
                                                                                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Mo 01.04.2013
Autor: piriyaie

Ich Poste zum schluss hin meine Ergebnisse nurnoch zur Vervollständigung des Forums. :-D

Bezug
                                                                                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 01.04.2013
Autor: piriyaie

ja... mit dieser additiven konstante war in meinem letzten forumbeitrag schon ewig die diskusion ob man die denn hinschreiben soll oder nicht. die einen sind der meinung man soll, die anderen sind anderer meinung. ich mache es so wie die meinung meines profs ist. werde ihn gleich am mittwoch fragen. und bis dahin lasse ich das + C aus "faulheit" einfach weg. :-D

Bezug
                                                                                        
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Mo 01.04.2013
Autor: notinX


> ja... mit dieser additiven konstante war in meinem letzten
> forumbeitrag schon ewig die diskusion ob man die denn
> hinschreiben soll oder nicht. die einen sind der meinung
> man soll, die anderen sind anderer meinung. ich mache es so
> wie die meinung meines profs ist. werde ihn gleich am
> mittwoch fragen. und bis dahin lasse ich das + C aus
> "faulheit" einfach weg. :-D

Ja, ich habe die Diskussion verfolgt. Im Zweifel würde ich die Konstante aber immer hinschreiben, statt sie wegzulassen. Denn mit Konstante ist es ohne Zweifel mathematische 100% korrekt. Ob man sie nun immer mitschreiben sollte oder nicht darüber lässt sich streiten.
Also: Wenn Du sie einfach hinschreibst (so viel Aufwand ist das nicht) bist Du auf der sicheren Seite.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de