www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Uneigentl. Integral (Konv.)
Uneigentl. Integral (Konv.) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentl. Integral (Konv.): Tipp
Status: (Frage) beantwortet Status 
Datum: 21:42 Mo 17.12.2012
Autor: Lustique

Aufgabe
Für $j=1, 2, 3$ sei [mm] $f_j\colon \mathbb{R}\to \mathbb{C}$. [/mm] Geben Sie in den folgenden Teilaufgaben jeweils die Menge aller [mm] $p\in[1, \infty]$ [/mm] an, so dass [mm] $f_j\in\mathcal{L}^p(\mathbb{R})$, [/mm] $j=1, 2, 3$, gilt.

... ii) [mm] $f_2(x)=\frac{1}{(1+x^2)^\frac{1}{2}}$ [/mm] iii) ...



Hallo mal wieder,
mein konkretes Problem ist das Folgende:

Es geht ja für [mm] $1\leqslant [/mm] p [mm] <\infty$ [/mm] um die Berechnung von [mm] $\int_\mathbb{R} |f_2(x)|^p\operatorname{d}x$. [/mm]

(Für [mm] $p=\infty$ [/mm] ist es ja klar, denn [mm] $f_2$ [/mm] ist ja eindeutig durch 1 beschränkt.) Für [mm] $p\geqslant [/mm] 2$ ist [mm] $\int_\mathbb{R} |f_2(x)|^p \operatorname{d}x <\infty$ [/mm] ja auch klar, weil ja [mm] $\int_\mathbb{R} |f_2(x)|^p \operatorname{d}x=2\int_0^\infty |f_2(x)|^p \operatorname{d}x$ [/mm] und [mm] $|f_2(x)|^p$ [/mm] monoton fällt für [mm] $p\to \infty$, [/mm] und [mm] $\int_\mathbb{R} |f_2(x)|^2 \operatorname{d}x =\pi$, [/mm] wodurch sich das Integral für [mm] $p\geqslant [/mm] 2$ abschätzen lässt. Für $p=1$ lässt sich das Integral ja auch noch recht bequem ausrechnen nachgucken, denn es ist ja [mm] $\int \frac{1}{\sqrt{1+x^2}}\operatorname{d}x=\operatorname{arsinh}(x)+C$, [/mm] und damit ist  [mm] $\int_\mathbb{R} |f_2(x)|^1 \operatorname{d}x=\infty$. [/mm]

Wie gehe ich jetzt aber für $1<p<2$ vor? Nach ein bisschen rumprobieren mit WolframAlpha bin ich zu der Vermutung gekommen, dass die Integrale alle konvergieren, aber ich weiß nicht, wie ich das zeigen soll.

Habt ihr vielleicht einen Tipp für eine passende Abschätzung, oder lassen sich die Integrale konkret berechnen?

        
Bezug
Uneigentl. Integral (Konv.): Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Mo 17.12.2012
Autor: Leopold_Gast

Sei [mm]p>1[/mm]. Für [mm]x \geq 1[/mm] kann man abschätzen:

[mm]\frac{1}{\left( 1 + x^2 \right)^{\frac{p}{2}}} < \frac{1}{\left( x^2 \right)^{\frac{p}{2}}} = \frac{1}{x^p}[/mm]

Das Integral [mm]\int_1^{\infty} \frac{\mathrm{d}x}{x^p}[/mm] konvergiert aber.

Bezug
                
Bezug
Uneigentl. Integral (Konv.): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Sa 29.12.2012
Autor: Lustique


> Sei [mm]p>1[/mm]. Für [mm]x \geq 1[/mm] kann man abschätzen:
>  
> [mm]\frac{1}{\left( 1 + x^2 \right)^{\frac{p}{2}}} < \frac{1}{\left( x^2 \right)^{\frac{p}{2}}} = \frac{1}{x^p}[/mm]
>  
> Das Integral [mm]\int_1^{\infty} \frac{\mathrm{d}x}{x^p}[/mm]
> konvergiert aber.

Ich habe ganz vergessen mich zu bedanken, also danke! Auch wenn ich darauf wohl selbst hätte kommen können sollen (und können), hat mir das auf jeden Fall weitergeholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de