www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Uneigentliches Integral
Uneigentliches Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Fr 28.12.2012
Autor: Chris993

Aufgabe
Existiert das uneigentliche Integral:
[mm] \integral_{0}^{\infty}{e^{-ax} dx} [/mm] a>0

Hi,
Also was mich soweit erstmal stört ist das zusätzliche a.

Nunja ich habe mal so angefangen:

[mm] \limes_{b\rightarrow\infty} \bruch{1}{-a}*e^{-\infty}-\bruch{1}{-a}| [/mm]

und genau hier hört es auf. Also den hinteren Teil:
konnte ich ja durch einsetzen der 0 für x weitgehenst vereinfachen aber jetzt hört es hier auf.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bitte um Hilfe.

Danke
Lg
Chris

        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Fr 28.12.2012
Autor: MathePower

Hallo Chris993,

> Existiert das uneigentliche Integral:
>  [mm]\integral_{0}^{\infty}{e^{-ax} dx}[/mm] a>0
>  Hi,
>  Also was mich soweit erstmal stört ist das zusätzliche
> a.
>  
> Nunja ich habe mal so angefangen:
>  
> [mm]\limes_{b\rightarrow\infty} \bruch{1}{-a}*e^{-\infty}-\bruch{1}{-a}|[/mm]
>  


Hier muss es doch zunächst so lauten:

[mm]\limes_{b\rightarrow\infty} \bruch{1}{-a}*e^{-\blue{a*b}}-\bruch{1}{-a}|[/mm]

Bilde nun den Grenzwert für [mm]b \rightarrow \infty[/mm] unter der Voraussetzung a>0.


> und genau hier hört es auf. Also den hinteren Teil:
>  konnte ich ja durch einsetzen der 0 für x weitgehenst
> vereinfachen aber jetzt hört es hier auf.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Bitte um Hilfe.
>  
> Danke
>  Lg
>  Chris


Gruss
MathePower

Bezug
                
Bezug
Uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Fr 28.12.2012
Autor: Chris993

ok das hatte ich direk übersprungen da ich doch jetzt [mm] \infty [/mm] für b einsetze...
damit bleibt der Ausdruck: [mm] \limes_{b\rightarrow \infty} \bruch{1}{-a}*\infty \bruch{1}{-a} [/mm]

bzw. [mm] \limes_{b\rightarrow \infty} \bruch{1}{a}*\infty [/mm]


Bezug
                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Fr 28.12.2012
Autor: Richie1401

Hallo Chris,

> ok das hatte ich direk übersprungen da ich doch jetzt
> [mm]\infty[/mm] für b einsetze...
>  damit bleibt der Ausdruck: [mm]\limes_{b\rightarrow \infty} \bruch{1}{-a}*\infty \bruch{1}{-a}[/mm]
>  
> bzw. [mm]\limes_{b\rightarrow \infty} \bruch{1}{a}*\infty[/mm]
>  

Das ganze ist einfach äußerst unsauber aufgeschrieben. Das ganze schmerzt ja wahsinnig.

Also noch einmal

[mm] \int_{0}^{\infty}{e^{-ax} dx}=\left[\frac{1}{-a}e^{-ax}\right]^{\infty}_{0} [/mm]

[mm] =\left(\lim\limits_{x\to\infty}\frac{1}{-a}e^{-ax}\right)-\frac{1}{-a}e^{-a*0} [/mm]

[mm] =0+\frac{1}{a} [/mm]

[mm] \underline{=\frac{1}{a}} [/mm]

Das Integral existiert also.

Bezug
                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Fr 28.12.2012
Autor: reverend

Hallo Chris,

> ok das hatte ich direk übersprungen da ich doch jetzt
> [mm]\infty[/mm] für b einsetze...

Soso. Du kannst also mit dem Unendlichen rechnen?

>  damit bleibt der Ausdruck: [mm]\limes_{b\rightarrow \infty} \bruch{1}{-a}*\infty \bruch{1}{-a}[/mm]

Da ist Richie gnädig. Das ist nicht unsauber, sondern Schwachsinn.
Oder in der Sprache der Mathematiker: falsch.

> bzw. [mm]\limes_{b\rightarrow \infty} \bruch{1}{a}*\infty[/mm]

Der Schwachsinn wird größer. Vielleicht lassen wir auch noch [mm] n\to{-}\infty [/mm] laufen?
Dieser Grenzwert ist für a<0 gerade [mm] -\infty, [/mm] für a>0 ist er [mm] +\infty, [/mm] und für a=0 ist er nicht definiert.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de