www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Unendliche Gruppe
Unendliche Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unendliche Gruppe: aus Elementen endliche Ordnung
Status: (Frage) beantwortet Status 
Datum: 11:07 Sa 07.02.2009
Autor: Pawelos

Hi

Kann mir jemand ein möglichst einfaches Beispiel für eine unendliche Gruppe in der jedes Element endliche Ordnung hat geben??!?

"Beispiel einer unendlichen p-Gruppe: Betrachte die Menge aller rationalen Zahlen, deren Nenner 1 oder eine Potenz der Primzahl p ist. Mit der Addition dieser Zahlen modulo 1 erhalten wir eine unendliche abelsche p-Gruppe."

Ein Beispiel aus Wikipedia, aber ich verstehe nicht ganz wie die Addition funktioniert.

        
Bezug
Unendliche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Sa 07.02.2009
Autor: felixf

Hallo

> Kann mir jemand ein möglichst einfaches Beispiel für eine
> unendliche Gruppe in der jedes Element endliche Ordnung hat
> geben??!?

Das einfachste Beispiel ist wohl [mm] $\IQ [/mm] / [mm] \IZ$ [/mm] mit der Addition.

Das Element [mm] $\frac{1}{2} [/mm] + [mm] \IZ$ [/mm] hat z.B. Ordnung 2: da [mm] $\frac{1}{2} \not\in \IZ$ [/mm] ist ist [mm] $\frac{1}{2} [/mm] + [mm] \IZ$ [/mm] ungleich dem neutralen Element, allerdings ist [mm] $(\frac{1}{2} [/mm] + [mm] \IZ) [/mm] + [mm] (\frac{1}{2} [/mm] + [mm] \IZ) [/mm] = [mm] (\frac{1}{2} [/mm] + [mm] \frac{1}{2}) [/mm] + [mm] \IZ [/mm] = 1 + [mm] \IZ [/mm] = [mm] \IZ$ [/mm] da $1 [mm] \in \IZ$ [/mm] ist, womit dies das neutrale Element ist.

Wenn du einen allgemeinen Bruch [mm] $\frac{a}{b}$ [/mm] hast, dann ist $b [mm] \cdot \frac{a}{b} \in \IZ$, [/mm] womit die Ordnung von [mm] $\frac{a}{b} [/mm] + [mm] \IZ$ [/mm] ein Teiler von $b$ ist.

> "Beispiel einer unendlichen p-Gruppe: Betrachte die Menge
> aller rationalen Zahlen, deren Nenner 1 oder eine Potenz
> der Primzahl p ist. Mit der Addition dieser Zahlen modulo 1
> erhalten wir eine unendliche abelsche p-Gruppe."

Das ist fast so wie [mm] $\IQ [/mm] / [mm] \IZ$, [/mm] wobei man eine Untergruppe von [mm] $\IQ$ [/mm] nimmt, naemlich [mm] $\IZ_p [/mm] = [mm] \{ \frac{a}{p^i} \mid a \in \IZ, i \in \IN \}$: [/mm] es ist ja [mm] $\frac{a}{p^i} [/mm] + [mm] \frac{b}{p^j} [/mm] = [mm] \frac{p^j a + p^i b}{p^{i+j}}$ [/mm] wieder von der Form [mm] $\frac{c}{p^k}$ [/mm] mit $k = i + j [mm] \in \IN$ [/mm] und $c = [mm] p_j [/mm] a + [mm] p^i [/mm] b [mm] \in \IZ$. [/mm]

Da hast du genau das gleiche: die Ordnung von [mm] $\frac{a}{p^i} [/mm] + [mm] \IZ$ [/mm] ist ein Teiler von [mm] $p^i$, [/mm] insbesondere also endlich.

LG Felix


Bezug
                
Bezug
Unendliche Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 So 08.02.2009
Autor: Pawelos

Hi
Ich hatte bei dem Beispiel Zähler und Nenner verwechselt und da hat das natürlich wenig Sinn gemacht. Jetzt ist alles klar!!

Viele dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de