www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung
Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 13.11.2016
Autor: Fry

Hallo zusammen!

Ich möchte zeigen, dass gilt:
[mm]\sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^n\le 0,5 [/mm]  für alle [mm] $n\ge [/mm] 13$.


Hätte jemand da einen Tipp für mich?
Hatte erst überlegt, die Summe jeweils zweier Summanden abzuschätzen, aber da komme ich nicht weiter.
LG
Fry

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 So 13.11.2016
Autor: abakus

Ich bin mir sicher, dass die Behauptung falsch ist.
Die hintere Klammer nimmt Werte an, die kleiner als 1 sind. Wenn man das mit einem hinreichend großem n potenziert, geht diese Potenz gegen Null.
Somit wird NICHT für jedes n der Summenwert 0,5 überschritten.

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:50 Mo 14.11.2016
Autor: Fry

Hallo Abakus,

du hast vollkommen Recht, mir ist beim Aufschreiben ein Fehler unterlaufen, es muss "kleiner gleich" 1/2 heißen.

Hätte jemand eine Idee?
Vg
Fry

Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Mo 14.11.2016
Autor: Gonozal_IX

Hiho,

[mm] $\left(1-\frac{k}{6}\right)^n$ [/mm] ist offensichtlich fallend in $n$, da [mm] $\left(1-\frac{k}{6}\right) \le [/mm] 1$ für [mm] $k\in\{1,\ldots,6\}$. [/mm]

Daraus folgt: $ [mm] \sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^n\le \sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^{13} [/mm] = [mm] \frac{459299}{944784} [/mm] < 0.5$

Gruß,
Gono


Bezug
                                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 Mo 14.11.2016
Autor: Fry

Hey Gono,

vielen Dank für deine Antwort! :)
Was mich noch irritiert ist, dass man diese Abschätzung so machen kann, da ja das Vorzeichen der Summanden alterniert.

VG
Fry

Bezug
                                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 Mo 14.11.2016
Autor: Gonozal_IX

Hiho,

kann man auch gar nicht, das hab ich schlichtweg übersehen :-)
Ich such mal eine neue Möglichkeit.

Gruß,
Gono

Bezug
                                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Mo 14.11.2016
Autor: Gonozal_IX

Hiho,

es geht fast doch so einfach :-)
Man schätzt [mm] $\left(1-\frac{k}{6}\right)^n$ [/mm] in den positiven Summanden nach oben durch [mm] $\left(1-\frac{k}{6}\right)^{14}$ [/mm] und in den negativen nach unten durch 0 ab und erhält:

$ [mm] \sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^n\le \vektor{6 \\ 1} \left(1-\frac{k}{6}\right)^{14} [/mm] - 0 +  [mm] \vektor{6 \\ 3} \left(1-\frac{3}{6}\right)^{14} [/mm] - 0 + [mm] \vektor{6 \\ 5} \left(1-\frac{5}{6}\right)^{14} [/mm] - 0 = [mm] \frac{764932357}{1632586752} [/mm] < 0.5$

Nebenbei: Der letzte Summand für $k=6$ ist sowieso $0$ wegen [mm] $\left(1-\frac{6}{6}\right) [/mm] = 0$

D.h. man hat die Ungleichung für [mm] $n\ge [/mm] 14$ gezeigt.
Für $n=13$ rechnet man wie vorhin einfach nach:

[mm] $\sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^{13} [/mm] = [mm] \frac{459299}{944784} [/mm] < 0.5 $

D.h. die Ungleichung gilt für $n [mm] \ge [/mm] 13$.

Gruß,
Gono

Bezug
                                                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Mo 14.11.2016
Autor: Fry

Stimmt :)
Ach super,
vielen Dank für deine Hilfe! :)

LG
Fry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de