www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ungleichung
Ungleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: wie ist das zu verstehen
Status: (Frage) beantwortet Status 
Datum: 13:21 Sa 23.10.2004
Autor: DSJuster

a [mm] \in \IZ [/mm]  
es gibt ein b [mm] \in \IZ [/mm] mit a²+(b+1)² [mm] \le [/mm] 5

das (b+1)² ist ja immer positiv ... kann aber mit b=-1 auch 0 sein.
Doch wenn ich b=0 nehme ... is der Ausdruck (b+1)² ... =1 und wäre für a=0;1;2;-1;-2 trotzdem gültig. Mich macht der Ausdruck es gibt ein b stutzig. Wäre schön wenn mir jemand erklären könnte was hiermit gemeint ist.

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Sa 23.10.2004
Autor: Marc

Hallo DSJuster,

> a [mm]\in \IZ[/mm]  
> es gibt ein b [mm]\in \IZ[/mm] mit a²+(b+1)² [mm]\le[/mm] 5
>  
> das (b+1)² ist ja immer positiv ... kann aber mit b=-1 auch
> 0 sein.
> Doch wenn ich b=0 nehme ... is der Ausdruck (b+1)² ... =1
> und wäre für a=0;1;2;-1;-2 trotzdem gültig. Mich macht der
> Ausdruck es gibt ein b stutzig. Wäre schön wenn mir jemand
> erklären könnte was hiermit gemeint ist.

Ich verstehe es so:
Ein beliebiges [mm] $a\in\IZ$ [/mm] vorgegeben.
Es ist nun zu zeigen, dass für jede solche Wahl von $a$ es ein $b$ gibt, so dass die Ungleichung erfüllt wird.

Bei dieser Interpretation ist die Behauptung aber falsch, wie man durch das Gegenbeispiel $a=4$ sofort einsieht.

Also, entweder du hast die Problematik aus dem Kontext gerissen (und über das $a$ ist noch mehr bekannt als [mm] $a\in\IZ$) [/mm] oder die Ungleichung ist falsch aufgeschrieben (mit einem [mm] $\ge$ [/mm] würde es Sinn machen) oder aber es ist gerade zu zeigen (durch das Gegenbeispiel), dass die Ungleichung falsch ist.

Viele Grüße,
Marc

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Sa 23.10.2004
Autor: DSJuster

Es geht praktisch darum drei Mengen A1 A2 und A3 zu bestimmen ... die Aufgabe, die ich hier gepostet habe ist zu A2, ich schreib sie nochmal genau so hin wie sie auf meinem Zettel steht.

A2:= {a [mm] \in \IZ [/mm]  /  es gibt ein b [mm] \in \IZ [/mm] mit a²+(b+1)² [mm] \le [/mm] 5 }

mehr hab ich hier nicht stehen und ich hab echt keinen Plan wie ich hier auf irgendeine Lösung kommen soll

Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Sa 23.10.2004
Autor: Marc

Hallo DSJuster,

> Es geht praktisch darum drei Mengen A1 A2 und A3 zu
> bestimmen ... die Aufgabe, die ich hier gepostet habe ist
> zu A2, ich schreib sie nochmal genau so hin wie sie auf
> meinem Zettel steht.
>  
> [mm] $A_2:= \{a \in \IZ| \mbox{ es gibt ein b } \in \IZ \mbox{ mit } a²+(b+1)²\le 5 \}$ [/mm]

Ah so, es geht also darum, gerade diejenigen Werte für a zu finden, für die die Bedingung "es gibt ein b mit..." erfüllbar ist.
  

> mehr hab ich hier nicht stehen und ich hab echt keinen Plan
> wie ich hier auf irgendeine Lösung kommen soll

Das einfachste bzw. der erste Schritt ist, es mal systematisch zu probieren.

Zum Beispiel könntest du dich fragen, ob $a=0$ in [mm] A_2 [/mm] enthalten ist: Für a=0 lautet die Ungleichung [mm] $(b+1)^2\le [/mm] 5$. Nun frag' ich dich: Gibt es ein b, so dass die Ungleichung wahr ist? Du müßtest dann antworten: Ja, für z.B. b=0 ist die Ungleichung erfüllt.
Damit haben wir schon mal gefunden: [mm] $0\in\A_2$ [/mm]

Nun führst du dieselben Überlegungen für

[mm] $\vdots$ [/mm]
[mm] $-2\stackrel{?}{\in}A_2$ [/mm]
[mm] $-1\stackrel{?}{\in}A_2$ [/mm]
[mm] $1\stackrel{?}{\in}A_2$ [/mm]
[mm] $2\stackrel{?}{\in}A_2$ [/mm]
[mm] $\vdots$ [/mm]

durch. Dadurch bekommst du ein gute Ahnung davon, welche Element in [mm] A_2 [/mm] liegen und welche nicht.
Vielleicht gelingt dir ja dann auch ein schlüssiger Beweis?

Bis gleich,
Marc

Bezug
                                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Sa 23.10.2004
Autor: DSJuster

Für -2 [mm] \le [/mm] a [mm] \le [/mm] 2 gibt es b [mm] \in \IZ [/mm] die diese Ungleichung erfüllen.

Die Lösungsmenge ist also L:={-2;-1;0;1;2} ???

Bezug
                                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Sa 23.10.2004
Autor: Marc

Hallo DSJuster,

> Für -2 [mm]\le[/mm] a [mm]\le[/mm] 2 gibt es b [mm]\in \IZ[/mm] die diese Ungleichung
> erfüllen.
>  
> Die Lösungsmenge ist also L:={-2;-1;0;1;2} ???

das sehe ich genauso, nur würde ich es nicht Lösungsmenge nennen, sondern dies ist die Menge [mm] $A_2$. [/mm]

Kannst du denn jetzt nachweisen, dass alle a>2 nicht in [mm] A_2 [/mm] liegen?

Viele Grüße,
Marc

Bezug
                                                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Sa 23.10.2004
Autor: DSJuster

Das kann ich auf jeden Fall nachweisen. Danke für deine Hilfe. Ein schönes We noch...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de