www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung
Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:50 Di 01.05.2007
Autor: seny

Aufgabe
Für welche reellen x sind folgende Ungleichungen erfüllt:
a) | |x-1| [mm] |\le [/mm] 0,5
b) [mm] \bruch{x^{2}-10x+24}{x^{2}-8x+15}\ge1 [/mm]

Ich habe für b) schon eine Lösung, weiß aber nicht ob sie richtig ist, bei a) habe ich nur geraten!

b) [mm] x^{2}-8x+15 [/mm] = 0 [mm] \Rightarrow \begin{cases} 5\\3 \end{cases} [/mm]
[mm] \Rightarrow x^{2}-8x+15=(x-3)(x-5) \begin{cases} >0, & \mbox{für x<5 und x>3} \\ =0, & \mbox{ für x=5 und x=3} \\ <0, & \mbox{für 5 3 Fälle:
x<5 und x>3: [mm] \bruch{x^{2}-10x+24}{x^{2}-8x+15} \ge [/mm] 1 [mm] \Rightarrow [/mm] x [mm] \le [/mm] 4,5

x=5 und x=3: nicht definiert

5<x<3: [mm] \bruch{x^{2}-10x+24}{x^{2}-8x+15} \ge [/mm] 1 [mm] \Rightarrow x\le4,5 [/mm]

Lösung: [mm] 5>x\ge4,5 [/mm] und x<3

aber irgendwie stimmt da was nicht!

b) hier hab ich nur geraten und bin auf x [mm] \le [/mm] 2,5 und [mm] x\ge [/mm] -0,5 gekommen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Di 01.05.2007
Autor: Steffi21

Hallo seny,

zur 1. Aufgabe, du unterscheidest zwei Fälle:

1. Fall:
[mm] x-1\ge0 [/mm] du erhälst [mm] x\ge1 [/mm]
somit ist
[mm] x-1\le0,5 [/mm] du kannst in deiner Aufgabe die Betragstriche weglassen
[mm] x\le1,5 [/mm]

aus [mm] x\ge1 [/mm] und [mm] x\le1,5 [/mm] erhälst du 1 [mm] \le [/mm] x [mm] \le [/mm] 1,5

2. Fall:
x-1<0 du erhälst x<1
somit ist
[mm] -(x-1)\le0,5 [/mm]
[mm] -x+1\le0,5 [/mm]
[mm] -x\le-0,5 [/mm]
[mm] x\ge0,5 [/mm]

aus x<1 und [mm] x\ge0,5 [/mm] erhölst du 0,5 [mm] \le [/mm] x < 1

aus beiden Fällen bekommst du somit: 0,5 [mm] \le [/mm] x < 1,5


Steffi


Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Di 01.05.2007
Autor: seny

vielen Dank erstmal für die Antwort.
Zu b): da müsste doch aber meine Überlegung richtig sein, oder?! Ich komme nur immer noch nicht drauf wo mein Fehler liegt. Vielleicht kannst du mir da nochmal einen Tipp geben!

Viele Grüße

Bezug
                        
Bezug
Ungleichung: Fallunterscheidung
Status: (Antwort) fertig Status 
Datum: 19:47 Di 01.05.2007
Autor: Loddar

Hallo Seny!


Du hast hier die Fallunterscheidungen etwas verdreht aufgeschrieben

[mm] $x^2-8x+15=(x-3)(x-5)\begin{cases} >0, & \mbox{für} x>5 \ \text{oder} \ x<3 \\<0, & \mbox{für 3

Damit ergeben sich folgende Fallunterscheidungen:

Fall 1:  $x>5 \ [mm] \text{oder} [/mm] \ x<3$

[mm] $x^2-10x+24 [/mm] \ [mm] \red{\ge} [/mm] \ [mm] x^2-8x+15$ [/mm]


Fall 2:  $3 \ < \ x \ < 5$

[mm] $x^2-10x+24 [/mm] \ [mm] \red{\le} [/mm] \ [mm] x^2-8x+15$ [/mm]


Gruß
Loddar


Bezug
        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Di 01.05.2007
Autor: schachuzipus

Hallo seny,

bei Aufgabe 2 hast du alles richtig gemacht, bis auf etwas unsauberes Aufschreiben.

den Nenner zu faktorisieren, um die spannenden Fälle zu finden, also

1) $x>5$

2) $x<3$

3) $3<x<5$

war goldrichtig, damit weißt du, ob und wann sich das Ungleichheitszeichen umdreht beim Durchmultiplizieren mit dem Nenner.

Deine Lösungen $x<3$ und [mm] $4,5\le [/mm] x<5$ sind jedenfalls richtig.

Ich packe dir mal ne Zeichnung in den Anhang, dann wird das auch graphisch deutlich

Gruß


schachuzipus

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Di 01.05.2007
Autor: seny

Hallo schachuzipus!
Also wenn die Aufgabe richtig ist, wurde sie bei mir wahrscheinlich bei der Korrektur vergessen. Danke für die Bestätigung das alles richtig ist.
Viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de