www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Ungleichung
Ungleichung < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Auflösen
Status: (Frage) beantwortet Status 
Datum: 20:21 Mo 19.11.2007
Autor: Nicole1989

Hi Leute

Ich habe da die Ungleichung :

[mm] \bruch{y-4}{2y+7} \le [/mm] y

Nun gut, ich konnte die Aufgabe lösen mit dem System, welches unser Lehrer uns gezeigt hat. Jedoch habe ich früher solche Ungleichungen immer anders gelöst, nämlich so:

Mein Vorgehen wäre nun...

y auf die linke Seite nehmen:

[mm] \bruch{y-4}{2y+7} -\bruch{y(2y+7)}{2y+7} \le [/mm] 0

nun wird mit 2y+7 multipliziert...dabei muss man schauen, ob der ganze Term negativ oder positiv ist

Falls er negativ wäre, würde sich das Ungleichzeichen ändern...

Also...
Positiv:
{y-4} -y{2y+7} [mm] \le [/mm] 0

Negativ:
{y-4}-y{2y+7} [mm] \ge [/mm] 0

Nun wenn man das Ganze ausrechnet gibt das jeweils

0>= [mm] 2y^2+6y+4 [/mm]
0<= [mm] 2y^2+6y+4 [/mm]

Nun denn...nach y auflösen

0>= 2(y+2)(y+1)
0<= 2(y+2)(y+1)

Nun ok...falls man da jetzt y herausfinden sollte, entspricht das nicht der Lösung...

welche zwischen -3.5<y<=2 oder y>=1

liegt...
was mache ich falsch?

Danke für eure Hilfe.

Grüsse Nicole

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mo 19.11.2007
Autor: Zwerglein

Hi, Nicole,

> Ich habe da die Ungleichung :
>  
> [mm]\bruch{y-4}{2y+7} \le[/mm] y
>  
> Nun gut, ich konnte die Aufgabe lösen mit dem System,
> welches unser Lehrer uns gezeigt hat. Jedoch habe ich
> früher solche Ungleichungen immer anders gelöst, nämlich
> so:
>  
> Mein Vorgehen wäre nun...
>  
> y auf die linke Seite nehmen:
>  
> [mm]\bruch{y-4}{2y+7} -\bruch{y(2y+7)}{2y+7} \le[/mm] 0
>  
> nun wird mit 2y+7 multipliziert...dabei muss man schauen,
> ob der ganze Term negativ oder positiv ist
>  
> Falls er negativ wäre, würde sich das Ungleichzeichen
> ändern...
>  
> Also...
>  Positiv:
>  {y-4} -y{2y+7} [mm]\le[/mm] 0
>  
> Negativ:
>  {y-4}-y{2y+7} [mm]\ge[/mm] 0
>  
> Nun wenn man das Ganze ausrechnet gibt das jeweils
>
> 0>= [mm]2y^2+6y+4[/mm]
>  0<= [mm]2y^2+6y+4[/mm]

Wenn Du's schon so umständlich rechnest, dann musst Du wenigstens Deine Fallunterscheidung SORGFÄLTIG durchführen.

Also: 1. Fall: 2x + 7 > 0 <=> x > -3,5 (***)
Umformung der Ungleichung gibt hier: [mm] 2y^{2} [/mm] + 6y + 4 [mm] \ge [/mm] 0,
was wiederum gleichzusetzen ist mit: y [mm] \le [/mm] -2 [mm] \quad \vee \quad [/mm] y [mm] \ge [/mm] -1.
Wenn diese Bedingung nun zugleich mit (***) gelten soll, ergibt sich:
[mm] L_{1} [/mm] = ]-3,5 ; -2] [mm] \cup \quad [/mm] [-1 ; [mm] +\infty[ [/mm]

2. Fall: x < -3,5
Ungleichung ergibt hier: [mm] 2y^{2} [/mm] + 6y + 4 [mm] \le [/mm] 0, also: -2 [mm] \le [/mm] y \ -1.
Hier ist die Schnittmenge leer;
drum entspricht die Gesamt-Lösungsmenge der Lösungsmenge [mm] L_{1} [/mm]

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de