www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Ungleichung
Ungleichung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Do 19.01.2012
Autor: piccolo1986

Hallo,

ich bereiete mich gerad auf meine Prüfungen vor und möchte zur Vorbereitung die folgende Aufgabe lösen. Zu zeigen ist die Ungleichung:

[mm] (\frac{1}{r}-1)(\frac{1}{s}-1)(\frac{1}{t}-1)\ge [/mm] 8

unter der Bedingung: r+s+t=1.

Ich habe versucht die linke Seite auszumultiplizieren und habe die Bedingung angewandt. Dann komme ich auf die Form:

[mm] \frac{rs+st+rt}{rst}\ge [/mm] 9

Wie könnte ich nun weiter vorgehen? Ist es möglich die Cauchy-Schwarz-Ungleichung zu verwenden?

mfg piccolo

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Do 19.01.2012
Autor: Marcel

Hallo,

> Hallo,
>  
> ich bereiete mich gerad auf meine Prüfungen vor und
> möchte zur Vorbereitung die folgende Aufgabe lösen. Zu
> zeigen ist die Ungleichung:
>  
> [mm](\frac{1}{r}-1)(\frac{1}{s}-1)(\frac{1}{t}-1)\ge[/mm] 8
>
> unter der Bedingung: r+s+t=1.
>  
> Ich habe versucht die linke Seite auszumultiplizieren und
> habe die Bedingung angewandt. Dann komme ich auf die Form:
>  
> [mm]\frac{rs+st+rt}{rst}\ge[/mm] 9

wie kommst Du darauf? Zumal Du hier auch aufpassen musst, ob Du wirklich äquivalent umformst. Denn Multiplikation etwa mit [mm] $t\,$ [/mm] erhält nur das Ungleichheitszeichen, wenn $t > [mm] 0\,$ [/mm] etc..
  

> Wie könnte ich nun weiter vorgehen? Ist es möglich die
> Cauchy-Schwarz-Ungleichung zu verwenden?

Ich weiß nicht, warum Du so kompliziert denkst und nicht das erste machst, was naheliegend wäre:
Du kannst doch die Ungleichung auf eine mit zwei Variablen reduzieren. Wegen [mm] $r+s+t=1\,$ [/mm] gilt etwa [mm] $t=1-r-s\,.$ [/mm]

Setze das mal in die behauptete Ungleichung ein! Danach ist nur noch eine Ungleichung "für alle [mm] $r\,$ [/mm] und alle [mm] $s\,$" [/mm] zu zeigen.

Gruß,
Marcel

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Do 19.01.2012
Autor: piccolo1986

Also zu den Umformungen hab ich nur ausmultipliziert und dann den Hauptnenner gebildet, von daher dürfte das kein Problem sein:

[mm] (\frac{1}{r}-1)(\frac{1}{s}-1)(\frac{1}{t}-1)=\frac{1}{rst}-\frac{1}{rt}-\frac{1}{st}+\frac{1}{t}-\frac{1}{rs}+\frac{1}{r}+\frac{1}{s}-1 [/mm]
[mm] =\frac{1-\overbrace{(r+s+t)}^{=1}+rs+st+rt-rst}{rst} [/mm]
[mm] =\frac{rs+st+rt}{rst}-1\ge [/mm] 8

jetzt mit Eins addieren
[mm] \frac{rs+st+rt}{rst}\ge [/mm] 9

So müsste der Weg eigentlich stimmen oder?
Wenn ich nun einsetze: r=1-s-t, dann ergibt sich:

[mm] \frac{s+t-s^2-t^2-st}{st-s^2t-st^2}\ge [/mm] 9

Hier komme ich leider nicht weiter.

mfg piccolo


Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Do 19.01.2012
Autor: Marcel

Hallo,

> Also zu den Umformungen hab ich nur ausmultipliziert und
> dann den Hauptnenner gebildet, von daher dürfte das kein
> Problem sein:
>  
> [mm](\frac{1}{r}-1)(\frac{1}{s}-1)(\frac{1}{t}-1)=\frac{1}{rst}-\frac{1}{rt}-\frac{1}{st}+\frac{1}{t}-\frac{1}{rs}+\frac{1}{r}+\frac{1}{s}-1[/mm]
>  [mm]=\frac{1-\overbrace{(r+s+t)}^{=1}+rs+st+rt-rst}{rst}[/mm]
>  [mm]=\frac{rs+st+rt}{rst}-1\ge[/mm] 8
>  
> jetzt mit Eins addieren
>  [mm]\frac{rs+st+rt}{rst}\ge[/mm] 9
>  
> So müsste der Weg eigentlich stimmen oder?

ja. Ich hatte das auf die Schnelle eben nicht gesehen. Aber Du hast vollkommen recht!

>  Wenn ich nun einsetze: r=1-s-t, dann ergibt sich:
>  
> [mm]\frac{s+t-s^2-t^2-st}{st-s^2t-st^2}\ge[/mm] 9

Auf die Schnelle fällt mir gerade auch nur eines ein:
Falls ihr schon Funktionen [mm] $\IR^2 \to \IR$ [/mm] behandelt habt, dann setze
[mm] $$f(s,t)=\frac{s+t-s^2-t^2-st}{st-s^2t-st^2}$$ [/mm]
und untersuche diese Funktion auf Extremstellen.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de