Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:35 Mo 18.02.2013 | Autor: | lisa2802 |
Aufgabe | a) man zeige, dass für alle a,b [mm] \in \IQ [/mm] und [mm] a,b\not= [/mm] 0 die Ungleichung | [mm] \bruch{a}{b} [/mm] + [mm] \bruch{b}{a}| \ge [/mm] 2 richtig ist
b) seien a,b,c [mm] \in \IQ [/mm] mit a<b und a [mm] \le [/mm] c [mm] \le [/mm] b. Zeigen sie, dass dann Zahlen x,y [mm] \in \IQ [/mm] existieren mit den Eigenschaften
c=xa + yb, 0 [mm] \le [/mm] x [mm] \le [/mm] 1, 0 [mm] \le [/mm] x [mm] \le [/mm] 1, x+y=1 |
Zu a)
| [mm] \bruch{a}{b} [/mm] + [mm] \bruch{b}{a}| \ge [/mm] 2
| [mm] \bruch{a}{b} [/mm] + [mm] \bruch{b}{a}| [/mm] = | [mm] \bruch{a^{2}+b^{2}}{ab}| [/mm] = [mm] \bruch{|a^{2}+b^{2}|}{|ab|} \ge [/mm] 2
[mm] \bruch{|a^{2}+b^{2}|}{|ab|} \ge [/mm] 2 [mm] \gdw |a^{2}+b^{2}| \ge [/mm] 2*|ab| [mm] \gdw [/mm]
[mm] |a^{2}+b^{2}|-2|ab| \ge [/mm] 0
Kann man das dann abschätzen? Also
0 [mm] \le |a^{2}+b^{2}|-2|ab| \le |(|a|-|b|)^{2}| \le |(a-b)^{2}| [/mm] und das ist ja wahr??? Ist das so korrekt?
b)
Aus c=xa+yb und x+y=1
=> y= [mm] \bruch{c-a}{b-a} [/mm] und [mm] x=\bruch{c-b}{a-b} [/mm]
Aus a [mm] \le [/mm] c [mm] \le [/mm] b und a<b folgt x [mm] \ge [/mm] 0 und y [mm] \ge [/mm] 0
Aber wie zeige ich dass es kleiner 1 ist?
|
|
|
|
Hallo,
zu Aufgabe a):
> a) man zeige, dass für alle a,b [mm]\in \IQ[/mm] und [mm]a,b\not=[/mm] 0
> die Ungleichung | [mm]\bruch{a}{b}[/mm] + [mm]\bruch{b}{a}| \ge[/mm] 2
> richtig ist
<B class=math <span a und>
> Zu a)
> | [mm]\bruch{a}{b}[/mm] + [mm]\bruch{b}{a}| \ge[/mm] 2
> | [mm]\bruch{a}{b}[/mm] + [mm]\bruch{b}{a}|[/mm] = | [mm]\bruch{a^{2}+b^{2}}{ab}|[/mm]
> = [mm]\bruch{|a^{2}+b^{2}|}{|ab|} \ge[/mm] 2
>
> [mm]\bruch{|a^{2}+b^{2}|}{|ab|} \ge[/mm] 2 [mm]\gdw |a^{2}+b^{2}| \ge[/mm]
> 2*|ab| [mm]\gdw[/mm]
> [mm]|a^{2}+b^{2}|-2|ab| \ge[/mm] 0
> Kann man das dann abschätzen? Also
> 0 [mm]\le |a^{2}+b^{2}|-2|ab| \le |(|a|-|b|)^{2}| \le |(a-b)^{2}|[/mm]
> und das ist ja wahr??? Ist das so korrekt?
</B>Das ist korrekt.
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:51 Mo 18.02.2013 | Autor: | lisa2802 |
Super! Danke
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:15 Mo 18.02.2013 | Autor: | lisa2802 |
Kann man bei Teil b x [mm] \le [/mm] 1 und y [mm] \le [/mm] 1 so zeigen:
x= [mm] \bruch{c-b}{a-b} \le [/mm] 1
[mm] \gdw [/mm] c-b [mm] \ge [/mm] a-b ( da a-b < 1)
[mm] \gdw [/mm] c [mm] \ge [/mm] a was laut Vorraussetzung gilt? Analog für y?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:29 Mo 18.02.2013 | Autor: | leduart |
Hallo
da ist was falsch, dein Nenner ist negativ. dann hilft a-b<1 wenig
also schreib besser
x= $ [mm] \bruch{b-c}{b-a} \le [/mm] $ 1
dann aus a<c<b => 0<b-c<b-a => [mm] \bruch{b-c}{b-a}<1
[/mm]
außerdem solltest du bei bekanntem anfangen und mit der Beh. enden.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:47 Mo 18.02.2013 | Autor: | lisa2802 |
Da sollte eigentlich a-b <0 stehen weswegen sich auch ja auch das kleinergleich "umdreht"
Da muss schon c-b stehen dass kommt von oben wenn ich in c=ax+by x=1-y einsetze [mm] \gwd [/mm] x= [mm] \bruch{c-b}{a-b}
[/mm]
Dann habe ich [mm] x\le [/mm] 1 [mm] \gdw \bruch{c-b}{a-b} \le [/mm] 1 [mm] \gdw [/mm] c-b [mm] \ge [/mm] a-b ( da a-b <0) [mm] \gdw [/mm] c [mm] \ge [/mm] a
Ich soll ja zeigen dass x,y [mm] \in \IQ [/mm] existieren mit den Eigenschaften 0 [mm] \le [/mm] x,y [mm] \le [/mm] 1!
Dass es größer 0 ist, habe ich ebenfalls über [mm] x=\bruch{c-b}{a-b},
[/mm]
Da c-b [mm] \le [/mm] 0 ( da [mm] c\le [/mm] b) und a-b < 0 ( da a <b) ist x [mm] \ge [/mm] 0 ( analog für y)
Dann habe ich das x = [mm] \bruch{c-b}{a-b} [/mm] benutzt, da ja auch 0 [mm] \le \bruch{c-b}{a-b} \le [/mm] 1 gelten muss und nur den rechten Teil benutzt und umgeformt auf eine Vorraussetzung, die ja gilt! Also gilt dann doch auch automatisch [mm] x\le [/mm] 1
Was sehe ich da falsch? :/
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:08 Mo 18.02.2013 | Autor: | leduart |
Hallo
ich sehe jetzt, wie du denkst, aber es ist doch viel einfacher, deinen bruch mit -1 zu erweitern;
x= $ [mm] \bruch{c-b}{a-b} =\bruch{b-c}{b-a}$
[/mm]
zu benutzen und so einfacher zu argumentieren statt mit neg. Zahlen.
Weiterhin ist es wirklich immer besser mit den vos. anzufangen, also mit 0<a<c<b und bei der Beh. x<1 anzukommen.
aber falsch ist deine Ungelichungskette nicht, wenn du noch dazufügst wegen a<b folgt a-b<0
Gruss leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:33 Di 19.02.2013 | Autor: | fred97 |
> a) man zeige, dass für alle a,b [mm]\in \IQ[/mm] und [mm]a,b\not=[/mm] 0
> die Ungleichung | [mm]\bruch{a}{b}[/mm] + [mm]\bruch{b}{a}| \ge[/mm] 2
> richtig ist
> b) seien a,b,c [mm]\in \IQ[/mm] mit a<b und a [mm]\le[/mm] c [mm]\le[/mm] b. Zeigen
> sie, dass dann Zahlen x,y [mm]\in \IQ[/mm] existieren mit den
> Eigenschaften
> c=xa + yb, 0 [mm]\le[/mm] x [mm]\le[/mm] 1, 0 [mm]\le[/mm] x [mm]\le[/mm] 1, x+y=1
>
>
> Zu a)
> | [mm]\bruch{a}{b}[/mm] + [mm]\bruch{b}{a}| \ge[/mm] 2
> | [mm]\bruch{a}{b}[/mm] + [mm]\bruch{b}{a}|[/mm] = | [mm]\bruch{a^{2}+b^{2}}{ab}|[/mm]
> = [mm]\bruch{|a^{2}+b^{2}|}{|ab|} \ge[/mm] 2
>
> [mm]\bruch{|a^{2}+b^{2}|}{|ab|} \ge[/mm] 2 [mm]\gdw |a^{2}+b^{2}| \ge[/mm]
> 2*|ab| [mm]\gdw[/mm]
> [mm]|a^{2}+b^{2}|-2|ab| \ge[/mm] 0
> Kann man das dann abschätzen? Also
> 0 [mm]\le |a^{2}+b^{2}|-2|ab| \le |(|a|-|b|)^{2}| \le |(a-b)^{2}|[/mm]
> und das ist ja wahr??? Ist das so korrekt?
Das gefällt mir nicht. Wo hast Du denn [mm]|a^{2}+b^{2}|-2|ab| \ge[/mm] 0 gezeigt ????
Zunächst können wir in [mm] |a^{2}+b^{2}| [/mm] die Betragsstriche weglassen, denn [mm] a^2+b^2 \ge [/mm] 0
Zu zeigen ist also: [mm] a^{2}+b^{2} \ge [/mm] 2|ab|
Nun ist [mm] x^2=|x|^2 [/mm] für alle x, also ist zu zeigen:
[mm] |a|^{2}+|b|^{2} [/mm] - 2|a||b| [mm] \ge [/mm] 0
Nun bemühe Herrn Binomi
FRED
>
>
> b)
> Aus c=xa+yb und x+y=1
> => y= [mm]\bruch{c-a}{b-a}[/mm] und [mm]x=\bruch{c-b}{a-b}[/mm]
> Aus a [mm]\le[/mm] c [mm]\le[/mm] b und a<b folgt x [mm]\ge[/mm] 0 und y [mm]\ge[/mm] 0
>
> Aber wie zeige ich dass es kleiner 1 ist?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:30 Di 19.02.2013 | Autor: | lisa2802 |
Danke , ich habe es hier nur in Kurzfassung geschrieben, habe aber so wie du argumentiert!
|
|
|
|