www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Ungleichung + Induktion
Ungleichung + Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung + Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mi 07.11.2007
Autor: abi2007LK

Hallo,

bezugnehmend auf eine meiner bisherigen Fragen - hier einige weitere in ähnlichem Zusammenhang. Ich frage diese Fragen in Form eines neuen Beitrages, da sich meine Lösung geändert hat und es in der entsprechenden Diskussion vieles gibt, was mich irritiert.

Nochmals die Aufgabenstellung:

Aufgabe
Bestimmen Sie alle [mm] a\in\IN [/mm] (natürliche Zahlen ohne Element 0), für die

[mm] a^{n}\; >\; n^{2}\; f"ur\; jedes\; n\; \in\; \IN\; [/mm]

für jedes [mm] n\in\IN [/mm] gilt.


Nun meine neue Lösung:

Durch Abschätzen denke ich zu wissen, dass die Aussage für alle a > 2 gilt.

IA: a = 3 ergibt:

[mm] 3^{n}\; >\; n^{2} [/mm]

Muss ich nun schon die Induktionsannahme durch vollst. Induktion beweisen? Eigentlich ist es ja klar, dass das stimmt - oder?

Ich übergehe das mal und komme nun zum Induktionsschluss:

IS: Sei a > 2 und n beliebig. Dann gilt:

[mm] a^{\left( n+1 \right)}\; =\; a^{n}\cdot a\; >\; n^{2}\cdot [/mm] a

Die größer als Relation ergibt sich aus einem Satz, den wir bewiesen haben. Hier ist er, um sicher zu gehen, dass ich den richtigen genommen habe:

Satz: a > 0 und x < y [mm] \Rightarrow [/mm] ax < ay

Das habe ich mir zu Nutze gemacht.

[mm] a^{n}\cdot a\; >\; n^{2}+n\cdot n\; >\; n^{2}+2n+1\; =\; \left( n+1 \right)^{2} [/mm]

Das war ja zu zeigen.

Alles richtig?


        
Bezug
Ungleichung + Induktion: Korrekturen
Status: (Antwort) fertig Status 
Datum: 14:33 Fr 09.11.2007
Autor: Roadrunner

Hallo abi2007LK!



> Durch Abschätzen denke ich zu wissen, dass die Aussage für
> alle a > 2 gilt.

[ok]

  

> IA: a = 3 ergibt:
>  
> [mm]3^{n}\; >\; n^{2}[/mm]
>  
> Muss ich nun schon die Induktionsannahme durch vollst.
> Induktion beweisen?

Wenn Du es ausführlich / korrekt machen willst ... ja!

  

> Ich übergehe das mal und komme nun zum Induktionsschluss:
>  
> IS: Sei a > 2 und n beliebig. Dann gilt: [mm]a^{\left( n+1 \right)}\; =\; a^{n}\cdot a\; >\; n^{2}\cdot[/mm] a

[ok]

  

> Die größer als Relation ergibt sich aus einem Satz, den wir
> bewiesen haben. Hier ist er, um sicher zu gehen, dass ich
> den richtigen genommen habe:
>  
> Satz: a > 0 und x < y [mm]\Rightarrow[/mm] ax < ay

Hier verstehe ich nicht, warum bzw. wie Du diesen Satz anwendest.



> Das habe ich mir zu Nutze gemacht.
>  
> [mm]a^{n}\cdot a\; >\; n^{2}+n\cdot n\; >\; n^{2}+2n+1\; =\; \left( n+1 \right)^{2}[/mm]

Wie kommst Du hier auf das zweite [mm] $n^2$ [/mm] (zumindest ohne Kommentar)?


Mein Ansatz:
[mm] $$a^{n+1} [/mm] \ = \ [mm] \blue{a^n}*a [/mm] \ [mm] \blue{>} [/mm] \ [mm] \blue{n^2}*\red{a} [/mm] \ [mm] \red{>} [/mm] \ [mm] n^2*\red{2} [/mm] \ = \ [mm] n^2+n^2 [/mm] \ > \ ...$$
Dabei habe ich im "roten Schritt" benutzt, dass gilt: $a \ > \ 2$ .


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de