www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Ungleichung Beweisen
Ungleichung Beweisen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Mi 25.05.2011
Autor: Foxy333

Aufgabe
Sei [mm] |(x,y)|:=\wurzel{x^2+y^2} [/mm] und (a,b)
Und es gelte : |(x,y)|>max(2,|(a,b)|)  (a,b) [mm] \in \IR^{2} [/mm]
Nun soll man folgende Ungleichung beweisen:
[mm] \wurzel{ (x^2-y^2+a)^{2} + (2xy+b)^{2} } >|(x,y)|^2-|(x,y)|>|(x,y)| [/mm]




Hallo
ich habe Probleme, diese Ungleichung zu lösen.
Den zweiten Teil der Ungleichung lautet |(x,y)|>2, was nach Definition schon gilt.
[mm] \wurzel{ (x^2-y^2+a)^{2} + (2xy+b)^{2} } >|(x,y)|^2-|(x,y)| [/mm]
[mm] \gdw [/mm]
[mm] \wurzel{ |(a,b)|^2+ 2ax^{2} - 2ay^{2} + 4bxy+|(x,y)|^4} >|(x,y)|^2-|(x,y)| [/mm]
Aber wie dann?
Bin ratlos

        
Bezug
Ungleichung Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Do 26.05.2011
Autor: reverend

Hallo Foxy,

genauer hinschauen...

> Sei [mm]|(x,y)|:=\wurzel{x^2+y^2}[/mm] und (a,b)

hier fehlt die Aussage über (a,b).

>  Und es gelte : |(x,y)|>max(2,|(a,b)|)  (a,b) [mm]\in \IR^{2}[/mm]
>  
> Nun soll man folgende Ungleichung beweisen:
>  [mm]\wurzel{ (x^2-y^2+a)^{2} + (2xy+b)^{2} } >|(x,y)|^2-|(x,y)|>|(x,y)|[/mm]
>  
>
>
> Hallo
>  ich habe Probleme, diese Ungleichung zu lösen.
>  Den zweiten Teil der Ungleichung lautet |(x,y)|>2, was
> nach Definition schon gilt.

Das sehe ich anders. Aber vielleicht ist es ja die fehlende Aussage über (a,b), die diesen Schluss erlaubt. In der vorliegenden Form ist |(x,y)|>2 eine andere Form der rechten Ungleichung.

Das könnte übrigens ein Ansatz sein, um ein Gegenbeispiel zu finden. Wäre (a,b)=(0,0), so müsste laut Voraussetzungen ja nur |(x,y)|>0 gelten, also wäre z.B. (x,y)=(1,1) erlaubt, was aber die rechte Ungleichung nicht erfüllt.

>  [mm]\wurzel{ (x^2-y^2+a)^{2} + (2xy+b)^{2} } >|(x,y)|^2-|(x,y)|[/mm]
>  
> [mm]\gdw[/mm]
>  [mm]\wurzel{ |(a,b)|^2+ 2ax^{2} - 2ay^{2} + 4bxy+|(x,y)|^4} >|(x,y)|^2-|(x,y)|[/mm]

Unter der Wurzel fehlt noch das Glied [mm] -2x^2y^2. [/mm]

Ansonsten sind beide Seiten der Ungleichung positiv, sofern die rechte Ungleichung erfüllt ist. Die rechte Seite hier ist dann sogar >2, über die linke wissen wir noch nichts.

> Aber wie dann?

Unter o.g. Voraussetzung darfst Du nun getrost quadrieren.

>  Bin ratlos

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de