www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Ungleichung Beweisen
Ungleichung Beweisen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Beweisen: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:30 So 07.04.2013
Autor: piriyaie

Aufgabe
T [mm] \ge \bruch{ln(rE+Z)-ln(rK+Z)}{ln(1+r)} [/mm]

Hallo,

sei r der Zinssatz, E das Zielkapital, Z die nachschüssige Zahlungen, K vorhandenes Kapital und T die Jahre bzw. Zeit.

Wie könnte ich die obige ungliechung beweisen??? Hat jemand einen Tipp wie ich anfangen könnte???

danke schonmal.

Grüße
Ali

        
Bezug
Ungleichung Beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:39 So 07.04.2013
Autor: piriyaie

Niemand eine Idee???

Bezug
                
Bezug
Ungleichung Beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:30 Mo 08.04.2013
Autor: reverend

Hallo Ali,

> Niemand eine Idee???

Du stellst an einem Sonntag Abend um 23:30h eine Frage und nur neun Minuten später diese Nachfrage.

Das ist, gelinde gesagt, optimistisch. Oder realitätsfern. Oder unverschämt. Oder dumm.
Ohne weitere Informationen kann ich dazwischen nicht entscheiden.

Was erwartest Du denn? Dass hier Hundertschaften von Ehrenamtlichen sitzen, die darauf warten, dass Du eine Frage stellst? Und darunter natürlich mindestens die Hälfte Spezialisten für die jeweilige Disziplin...

Keep cool, buddy.

Grüße
reverend

Bezug
                        
Bezug
Ungleichung Beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:18 Mo 08.04.2013
Autor: piriyaie

sorry :-(

Bezug
        
Bezug
Ungleichung Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Mo 08.04.2013
Autor: reverend

Hallo Ali,

...dabei ist die Frage nicht so speziell. :-)
(anschließend an die Mitteilung, die ich eben geschrieben habe: orientiere Dich an der Uhrzeit)

> T [mm]\ge \bruch{ln(rE+Z)-ln(rK+Z)}{ln(1+r)}[/mm]
> Hallo,

>

> sei r der Zinssatz, E das Zielkapital, Z die nachschüssige
> Zahlungen, K vorhandenes Kapital und T die Jahre bzw.
> Zeit.

>

> Wie könnte ich die obige ungliechung beweisen??? Hat
> jemand einen Tipp wie ich anfangen könnte???

Klar.
Wenn r,Z,K und T gegeben wären, wie würdest Du dann das resultierende Kapital am Ende der Anlagezeit berechnen?

Das ist die Gleichung, die man bräuchte, um in der Aufgabe Gleichheit zu beweisen. Dazu muss man sie einfach nach T umformen. Dass die obige Ungleichung erfüllt ist, wenn T größer wird, dürfte ziemlich trivial sein.

Grüße
reverend

Bezug
                
Bezug
Ungleichung Beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:35 Mo 08.04.2013
Autor: piriyaie

Ok. Ok. ich hab das mit der Uhrzeit verstanden! Wollte aber unbedingt den beweis hinbekommen....

> Hallo Ali,
>  
> ...dabei ist die Frage nicht so speziell. :-)
>  (anschließend an die Mitteilung, die ich eben geschrieben
> habe: orientiere Dich an der Uhrzeit)
>  
> > T [mm]\ge \bruch{ln(rE+Z)-ln(rK+Z)}{ln(1+r)}[/mm]
>  > Hallo,

>  >
>  > sei r der Zinssatz, E das Zielkapital, Z die

> nachschüssige
>  > Zahlungen, K vorhandenes Kapital und T die Jahre bzw.

>  > Zeit.

>  >
>  > Wie könnte ich die obige ungliechung beweisen??? Hat

>  > jemand einen Tipp wie ich anfangen könnte???

>  
> Klar.
>  Wenn r,Z,K und T gegeben wären, wie würdest Du dann das
> resultierende Kapital am Ende der Anlagezeit berechnen?

so: [mm] E=K*(1+r)^{T} [/mm]

>  
> Das ist die Gleichung, die man bräuchte, um in der Aufgabe
> Gleichheit zu beweisen. Dazu muss man sie einfach nach T
> umformen. Dass die obige Ungleichung erfüllt ist, wenn T
> größer wird, dürfte ziemlich trivial sein.

Also ich hab mal versucht bissl umzuformen... Komme aber auf nix richtiges... hier mal mein Lösungsvorschlag:

[mm] E=K*(1+r)^{T} [/mm]

[mm] \bruch{E}{K}=(1+r)^{T} [/mm]

[mm] ln(\bruch{E}{K})=ln((1+r)^{T}) [/mm]

[mm] ln(\bruch{E}{K})=T*ln((1+r)) [/mm]

[mm] \bruch{ln(\bruch{E}{K})}{ln(1+r)}=T [/mm]

Und nun????

>  
> Grüße
>  reverend


Bezug
                        
Bezug
Ungleichung Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:15 Mo 08.04.2013
Autor: Helbig


> Ok. Ok. ich hab das mit der Uhrzeit verstanden! Wollte aber
> unbedingt den beweis hinbekommen....
>  
> > Hallo Ali,
>  >  
> > ...dabei ist die Frage nicht so speziell. :-)
>  >  (anschließend an die Mitteilung, die ich eben
> geschrieben
> > habe: orientiere Dich an der Uhrzeit)
>  >  
> > > T [mm]\ge \bruch{ln(rE+Z)-ln(rK+Z)}{ln(1+r)}[/mm]
>  >  > Hallo,

>  >  >
>  >  > sei r der Zinssatz, E das Zielkapital, Z die

> > nachschüssige
>  >  > Zahlungen, K vorhandenes Kapital und T die Jahre

> bzw.
>  >  > Zeit.

>  >  >
>  >  > Wie könnte ich die obige ungliechung beweisen???

> Hat
>  >  > jemand einen Tipp wie ich anfangen könnte???

>  >  
> > Klar.
>  >  Wenn r,Z,K und T gegeben wären, wie würdest Du dann
> das
> > resultierende Kapital am Ende der Anlagezeit berechnen?
>  
> so: [mm]E=K*(1+r)^{T}[/mm]
>  
> >  

> > Das ist die Gleichung, die man bräuchte, um in der Aufgabe
> > Gleichheit zu beweisen. Dazu muss man sie einfach nach T
> > umformen. Dass die obige Ungleichung erfüllt ist, wenn T
> > größer wird, dürfte ziemlich trivial sein.
>  
> Also ich hab mal versucht bissl umzuformen... Komme aber
> auf nix richtiges... hier mal mein Lösungsvorschlag:
>  
> [mm]E=K*(1+r)^{T}[/mm]
>  
> [mm]\bruch{E}{K}=(1+r)^{T}[/mm]
>  
> [mm]ln(\bruch{E}{K})=ln((1+r)^{T})[/mm]
>  
> [mm]ln(\bruch{E}{K})=T*ln((1+r))[/mm]
>  
> [mm]\bruch{ln(\bruch{E}{K})}{ln(1+r)}=T[/mm]
>  
> Und nun????
>  

Hallo Ali,

Weise zunächst Gleichheit für $Z=0$ nach. Und dann beachte

    ${rE+Z [mm] \over [/mm] rK+Z} [mm] \le {rE\over rK}\,,$ [/mm]

die Funktionalgleichung für ln, also ln (a)- ln (b) = ln (a/b) und die Monotonie von ln.
Gruß,
Wolfgang

Bezug
                                
Bezug
Ungleichung Beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:40 Mo 08.04.2013
Autor: piriyaie


> > Ok. Ok. ich hab das mit der Uhrzeit verstanden! Wollte aber
> > unbedingt den beweis hinbekommen....
>  >  
> > > Hallo Ali,
>  >  >  
> > > ...dabei ist die Frage nicht so speziell. :-)
>  >  >  (anschließend an die Mitteilung, die ich eben
> > geschrieben
> > > habe: orientiere Dich an der Uhrzeit)
>  >  >  
> > > > T [mm]\ge \bruch{ln(rE+Z)-ln(rK+Z)}{ln(1+r)}[/mm]
>  >  >  >

> Hallo,
>  >  >  >
>  >  >  > sei r der Zinssatz, E das Zielkapital, Z die

> > > nachschüssige
>  >  >  > Zahlungen, K vorhandenes Kapital und T die Jahre

> > bzw.
>  >  >  > Zeit.

>  >  >  >
>  >  >  > Wie könnte ich die obige ungliechung beweisen???

> > Hat
>  >  >  > jemand einen Tipp wie ich anfangen könnte???

>  >  >  
> > > Klar.
>  >  >  Wenn r,Z,K und T gegeben wären, wie würdest Du
> dann
> > das
> > > resultierende Kapital am Ende der Anlagezeit berechnen?
>  >  
> > so: [mm]E=K*(1+r)^{T}[/mm]
>  >  
> > >  

> > > Das ist die Gleichung, die man bräuchte, um in der Aufgabe
> > > Gleichheit zu beweisen. Dazu muss man sie einfach nach T
> > > umformen. Dass die obige Ungleichung erfüllt ist, wenn T
> > > größer wird, dürfte ziemlich trivial sein.
>  >  
> > Also ich hab mal versucht bissl umzuformen... Komme aber
> > auf nix richtiges... hier mal mein Lösungsvorschlag:
>  >  
> > [mm]E=K*(1+r)^{T}[/mm]
>  >  
> > [mm]\bruch{E}{K}=(1+r)^{T}[/mm]
>  >  
> > [mm]ln(\bruch{E}{K})=ln((1+r)^{T})[/mm]
>  >  
> > [mm]ln(\bruch{E}{K})=T*ln((1+r))[/mm]
>  >  
> > [mm]\bruch{ln(\bruch{E}{K})}{ln(1+r)}=T[/mm]
>  >  
> > Und nun????
>  >  
> Hallo Ali,
>  
> Weise zunächst Gleichheit für [mm]Z=0[/mm] nach. Und dann beachte

ok das wäre dann so:

[mm] \bruch{ln(E)-ln(K)}{ln(1+r)} [/mm] = T

1. Fall: Z=0

[mm] \bruch{ln(E+Z)-ln(K+Z)}{ln(1+r)} [/mm] = T

(da wenn z. B. a = b wobei a,b [mm] \in \IR [/mm] stimmen würde, würde ja auch a+0 = b stimmen.)

Aber wie bekomme ich nun das r rein???

2. Fall: Z>0

[mm] \bruch{ln(E+Z)-ln(K+Z)}{ln(1+r)} [/mm] > T

(da ich ja was dazunehme auf der linken Seite wird diese auf jedenfall echt größer als die rechte seite.)

Aber wie bekomme ich nun hier das r noch rein???


>  
> [mm]{rE+Z \over rK+Z} \le {rE\over rK}\,,[/mm]
>  
> die Funktionalgleichung für ln, also ln (a)- ln (b) = ln
> (a/b) und die Monotonie von ln.
>  Gruß,
>  Wolfgang


Danke schonmal.

Grüße
Ali


Bezug
                                        
Bezug
Ungleichung Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mo 08.04.2013
Autor: Helbig


> > > Ok. Ok. ich hab das mit der Uhrzeit verstanden! Wollte aber
> > > unbedingt den beweis hinbekommen....
>  >  >  
> > > > Hallo Ali,
>  >  >  >  
> > > > ...dabei ist die Frage nicht so speziell. :-)
>  >  >  >  (anschließend an die Mitteilung, die ich eben
> > > geschrieben
> > > > habe: orientiere Dich an der Uhrzeit)
>  >  >  >  
> > > > > T [mm]\ge \bruch{ln(rE+Z)-ln(rK+Z)}{ln(1+r)}[/mm]
>  >  >  >  
> >
> > Hallo,
>  >  >  >  >
>  >  >  >  > sei r der Zinssatz, E das Zielkapital, Z die

> > > > nachschüssige
>  >  >  >  > Zahlungen, K vorhandenes Kapital und T die

> Jahre
> > > bzw.
>  >  >  >  > Zeit.

>  >  >  >  >
>  >  >  >  > Wie könnte ich die obige ungliechung

> beweisen???
> > > Hat
>  >  >  >  > jemand einen Tipp wie ich anfangen könnte???

>  >  >  >  
> > > > Klar.
>  >  >  >  Wenn r,Z,K und T gegeben wären, wie würdest Du
> > dann
> > > das
> > > > resultierende Kapital am Ende der Anlagezeit berechnen?
>  >  >  
> > > so: [mm]E=K*(1+r)^{T}[/mm]
>  >  >  
> > > >  

> > > > Das ist die Gleichung, die man bräuchte, um in der Aufgabe
> > > > Gleichheit zu beweisen. Dazu muss man sie einfach nach T
> > > > umformen. Dass die obige Ungleichung erfüllt ist, wenn T
> > > > größer wird, dürfte ziemlich trivial sein.
>  >  >  
> > > Also ich hab mal versucht bissl umzuformen... Komme aber
> > > auf nix richtiges... hier mal mein Lösungsvorschlag:
>  >  >  
> > > [mm]E=K*(1+r)^{T}[/mm]
>  >  >  
> > > [mm]\bruch{E}{K}=(1+r)^{T}[/mm]
>  >  >  
> > > [mm]ln(\bruch{E}{K})=ln((1+r)^{T})[/mm]
>  >  >  
> > > [mm]ln(\bruch{E}{K})=T*ln((1+r))[/mm]
>  >  >  
> > > [mm]\bruch{ln(\bruch{E}{K})}{ln(1+r)}=T[/mm]
>  >  >  
> > > Und nun????
>  >  >  
> > Hallo Ali,
>  >  
> > Weise zunächst Gleichheit für [mm]Z=0[/mm] nach. Und dann beachte
>  
> ok das wäre dann so:
>  
> [mm]\bruch{ln(E)-ln(K)}{ln(1+r)}[/mm] = T
>  
> 1. Fall: Z=0
>  
> [mm]\bruch{ln(E+Z)-ln(K+Z)}{ln(1+r)}[/mm] = T
>  
> (da wenn z. B. a = b wobei a,b [mm]\in \IR[/mm] stimmen würde,
> würde ja auch a+0 = b stimmen.)
>  
> Aber wie bekomme ich nun das r rein???

Es gilt:

[mm] ${\ln E - \ln K \over \ln(1+r)} [/mm] = {1 [mm] \over \ln(1+r)} \ln [/mm] {E [mm] \over [/mm] K} = [mm] {1\over \ln(1+r)}*\ln(1+r)^T [/mm] = T$

>  
> 2. Fall: Z>0

Die Ungleichung folgt aus Fall 1, da ${E+Z [mm] \over [/mm] K+Z} > [mm] {E\over K}\,.$ [/mm]

OK?

Gruß Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de