www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung beweisen
Ungleichung beweisen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:26 Di 08.10.2013
Autor: Babybel73

Hallo zusammen

Muss folgendes zeigen:

Für alle [mm] n\in\IN [/mm] ist
[mm] (1+\bruch{1}{n})^{n}\le\summe_{k=0}^{n}\bruch{1}{k!}<3 [/mm]

Den ersten Teil habe ich wie folgt bewiesen:
Mit Binomischer Formel [mm] \Rightarrow [/mm]
[mm] (1+\bruch{1}{n})^{n} [/mm] = [mm] \summe_{k=0}^{n}\vektor{n \\ k}1^{n-k}*(\bruch{1}{n})^{k} [/mm] = [mm] \summe_{k=0}^{n}\vektor{n \\ k}*(\bruch{1}{n^{k}}) [/mm]
Von einem vorherigen Beweis [mm] \Rightarrow [/mm]
[mm] \summe_{k=0}^{n}\vektor{n \\ k}*(\bruch{1}{n^{k}}) \le \summe_{k=0}^{n}\bruch{1}{k!} [/mm]

Beim 2. Teil habe ich keine Ahnung wie ich vorgehen soll. Kann mir dort jemand einen Tipp geben?

Liebe Grüsse

        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Di 08.10.2013
Autor: abakus


> Hallo zusammen

>

> Muss folgendes zeigen:

>

> Für alle [mm]n\in\IN[/mm] ist
> [mm](1+\bruch{1}{n})^{n}\le\summe_{k=0}^{n}\bruch{1}{k!}<3[/mm]

>

> Den ersten Teil habe ich wie folgt bewiesen:
> Mit Binomischer Formel [mm]\Rightarrow[/mm]
> [mm](1+\bruch{1}{n})^{n}[/mm] = [mm]\summe_{k=0}^{n}\vektor{n \\ k}1^{n-k}*(\bruch{1}{n})^{k}[/mm]
> = [mm]\summe_{k=0}^{n}\vektor{n \\ k}*(\bruch{1}{n^{k}})[/mm]
> Von
> einem vorherigen Beweis [mm]\Rightarrow[/mm]
> [mm]\summe_{k=0}^{n}\vektor{n \\ k}*(\bruch{1}{n^{k}}) \le \summe_{k=0}^{n}\bruch{1}{k!}[/mm]

>

> Beim 2. Teil habe ich keine Ahnung wie ich vorgehen soll.
> Kann mir dort jemand einen Tipp geben?

>

> Liebe Grüsse

Hallo,
die ersten beiden Summanden von [mm]\summe_{k=0}^{n}\bruch{1}{k!}[/mm] sind 1 und nochmal 1. Zu zeigen ist also noch, dass 
[mm]\summe_{\red{k=2}}^{n}\bruch{1}{k!}[/mm] kleiner als 1 ist. Das sollte durch eine Abschätzung gegenüber [mm] $\frac12 [/mm] + [mm] \frac14+ \frac18+\cdots$ [/mm] möglich sein.
Gruß Abakus 

Bezug
                
Bezug
Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Di 08.10.2013
Autor: Babybel73

Hallo

Verstehe es immer noch nicht ganz.
Die ersten beiden Summanden geben eins. Das ist ok.
Dann muss ich noch
[mm] \summe_{{k=2}}^{n}\bruch{1}{k!} [/mm] abschätzen:
[mm] \summe_{{k=2}}^{n}\bruch{1}{k!}\le\summe_{{k=1}}^{n}\bruch{1}{2^{k}} [/mm]
Und dies sollte ja nun kleiner sein als 1, aber wie kann ich dies genau zeigen?

Liebe Grüsse

Bezug
                        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Di 08.10.2013
Autor: abakus


> Hallo

>

> Verstehe es immer noch nicht ganz.
> Die ersten beiden Summanden geben eins. Das ist ok.
> Dann muss ich noch
> [mm]\summe_{{k=2}}^{n}\bruch{1}{k!}[/mm] abschätzen:

>

> [mm]\summe_{{k=2}}^{n}\bruch{1}{k!}\le\summe_{{k=1}}^{n}\bruch{1}{2^{k}}[/mm]
> Und dies sollte ja nun kleiner sein als 1, aber wie kann
> ich dies genau zeigen?

>

> Liebe Grüsse

Hallo,
zeige
[mm] $\frac{1}{2!}=\frac{1}{2}$ [/mm]
[mm] $\frac{1}{3!}<\frac{1}{4}$  [/mm]
[mm] $\frac{1}{4!}<\frac{1}{8}$  [/mm]
[mm] $\frac{1}{5!}<\frac{1}{16}$ ... [/mm]
Außerdem ist  [mm] $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+... [/mm] $ kleiner als 1.
Gruß Abakus

Bezug
                        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 08.10.2013
Autor: tobit09

Hallo Babybel73,


> [mm]\summe_{{k=2}}^{n}\bruch{1}{k!}\le\summe_{{k=1}}^{n}\bruch{1}{2^{k}}[/mm]
>  Und dies sollte ja nun kleiner sein als 1, aber wie kann
> ich dies genau zeigen?

Es gilt [mm] $\summe_{k=1}^n\bruch1{2^k}=1-\bruch1{2^n}<1$. [/mm]

Die von mir behauptete Gleichheit kann man z.B. per vollständiger Induktion nach $n$ zeigen.

Alternativ handelt es sich bei

     [mm] $\summe_{k=0}^n\bruch1{2^k}=\summe_{k=0}^n(\bruch12)^k$ [/mm]

um eine endliche geometrische Reihe, die somit den Wert

     [mm] $\bruch{1-(\bruch12)^{n+1}}{1-\bruch12}=\bruch{1-(\bruch12)^{n+1}}{\bruch12}=2*(1-(\bruch12)^{n+1})=2-2*(\bruch12)^{n+1}=2-(\bruch12)^n$ [/mm]

hat.

Also gilt

     [mm] $\summe_{k=1}^n\bruch1{2^k}=(\summe_{k=0}^n\bruch1{2^k})-\bruch1{2^0}=2-(\bruch12)^n-1=1-\bruch1{2^n}$. [/mm]


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de