www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Ungleichung für erzeugende Fkt
Ungleichung für erzeugende Fkt < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung für erzeugende Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Sa 09.06.2012
Autor: insomniac

Aufgabe
X sei eine Zufallsvariable, die Werte in [mm] \mathbb{N}_{0} [/mm] annimmt, und g die erzeugende Funktion, also [mm] g(s)=E(s^{X})=\sum \limits_{k=0}^{\infty}s^{k}P(X=k). [/mm]
Es gilt [mm] \frac{1-g(s)}{1-s} [/mm] = [mm] \sum \limits_{k=0}^{\infty} P(X>k)s^{k}. [/mm]

Ich arbeite gerade am Beweis eines Satzes und bin auf die oben genannte Ungleichung gestoßen. Ich habe Unmengen an Umformungen probiert und komme einfach nicht darauf, wie es funktionieren soll. Hat jemand eine Idee für mich?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichung für erzeugende Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Sa 09.06.2012
Autor: Gonozal_IX

Hiho,

ich seh da zwar keine Ungleichung, sondern nur ne Gleichung, aber fangen wir mal an:

[mm] $(1-s)*\sum \limits_{k=0}^{\infty} P(X>k)s^{k} [/mm] = [mm] \sum \limits_{k=0}^{\infty} P(X>k)s^{k} [/mm] - [mm] \sum \limits_{k=0}^{\infty} P(X>k)s^{k+1}$ [/mm]

$= [mm] \sum \limits_{k=0}^{\infty} P(X>k)s^{k} [/mm] - [mm] \sum \limits_{k=0}^{\infty} \left(P(X>k+1) + P(X=k+1)\right)s^{k+1}$ [/mm]

$=  [mm] \sum \limits_{k=0}^{\infty} P(X>k)s^{k} [/mm] -  [mm] \sum \limits_{k=0}^{\infty} P(X>k+1)s^{k+1} [/mm] -  [mm] \sum \limits_{k=0}^{\infty} P(X=k+1)s^{k+1}$ [/mm]

Na mach mal weiter, nu stehts ja fast da.

MFG,
Gono.

Bezug
                
Bezug
Ungleichung für erzeugende Fkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:59 So 10.06.2012
Autor: insomniac

Erst mal vielen Dank für deine Hilfe, den Ansatz hatte ich tatsächlich noch nicht verfolgt. Es geht tatsächlich um eine Ungleichung, ich hatte allerdings vergessen den zweiten Teil zu posten. Ich habe als Voraussetzung nämlich noch [mm] \sum \limits_{k=0}^{\infty} \log(k+2)P(X=k) \leq D_{1} [/mm] < [mm] \infty [/mm] gegeben, und die ganze Gleichung/ Ungleichung lautet [mm] \frac{1-g(s)}{1-s} [/mm] = [mm] \sum \limits_{k=0}^{\infty}P(X>k)s^{k} \leq D_{1}\sum \limits_{k=0}^{\infty} \frac{1}{\log(k+2)}s^{k}. [/mm]
Den ersten Teil hab ich ja jetzt, den zweiten habe ich mal umgeformt und habe versucht [mm] \sum \limits_{k=0}^{\infty}P(X>k)\log(k+2) \leq D_{1} [/mm] zu zeigen. Das würde ja aber nur Sinn machen, wenn P(X>k) [mm] \leq [/mm] P(X=k) gelten würde. Habe ich in meiner Umformung einen Fehler?

Bezug
                        
Bezug
Ungleichung für erzeugende Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 19.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de