Ungleichung geom. harm. Mittel < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:21 Do 05.11.2009 | Autor: | St4ud3 |
Aufgabe | Beweisen Sie die Ungleichung zwischen dem geometrischen und harmonischen Mittel: Ist n [mm] \in \IN [/mm] und sind [mm] a_{1}, [/mm] ... , [mm] a_{n} \in \IR_{+}, [/mm] so gilt
[mm] \bruch{1}{\bruch{1}{n} \summe_{k=1}^{n} \bruch{1}{a_{k}}} \le \wurzel[n]{\produkt_{k=1}^{n}a_{k}}
[/mm]
Überlegen Sie weiterhin, welche Bedingungen Sie an die [mm] a_{k} [/mm] stellen müssen, damit Gleichheit gilt. |
Hey,
ich hab etwas Probleme mit der Aufgabe und die ist auch ne ganze Ecke schwerer als die bisherigen, die wir rechnen mussten. Mein erstes Schritt war [mm] a_{k} [/mm] durch [mm] b_{k}^{n} [/mm] zu ersetzen, um die Wurzel wegzubekommen. Sollte ja möglich sein, da [mm] \wurzel[n]{x} [/mm] mit x [mm] \in \IR_{+} [/mm] ja auch mit [mm] y^{n}=x [/mm] als y geschrieben werden kann. Damit hat man dann:
[mm] \bruch{n}{\summe_{k=1}^{n} \bruch{1}{b_{k}^{n}}} \le \produkt_{k=1}^{n}b_{k}
[/mm]
Aber wie weiter? Mit vollständiger Induktion hab ichs mal probiert, aber bin da auf keine Lösung gekommen :/
|
|
|
|
Hallo,
> Beweisen Sie die Ungleichung zwischen dem geometrischen und
> harmonischen Mittel: Ist n [mm]\in \IN[/mm] und sind [mm]a_{1},[/mm] ... ,
> [mm]a_{n} \in \IR_{+},[/mm] so gilt
>
> [mm]\bruch{1}{\bruch{1}{n} \summe_{k=1}^{n} \bruch{1}{a_{k}}} \le \wurzel[n]{\produkt_{k=1}^{n}a_{k}}[/mm]
>
> Überlegen Sie weiterhin, welche Bedingungen Sie an die
> [mm]a_{k}[/mm] stellen müssen, damit Gleichheit gilt.
> Hey,
>
> ich hab etwas Probleme mit der Aufgabe und die ist auch ne
> ganze Ecke schwerer als die bisherigen, die wir rechnen
> mussten. Mein erstes Schritt war [mm]a_{k}[/mm] durch [mm]b_{k}^{n}[/mm] zu
> ersetzen, um die Wurzel wegzubekommen. Sollte ja möglich
> sein, da [mm]\wurzel[n]{x}[/mm] mit x [mm]\in \IR_{+}[/mm] ja auch mit
> [mm]y^{n}=x[/mm] als y geschrieben werden kann. Damit hat man dann:
>
> [mm]\bruch{n}{\summe_{k=1}^{n} \bruch{1}{b_{k}^{n}}} \le \produkt_{k=1}^{n}b_{k}[/mm]
>
> Aber wie weiter? Mit vollständiger Induktion hab ichs mal
> probiert, aber bin da auf keine Lösung gekommen :/
>
>
fuer den fall, dass du auch nicht-eigene beweise akzeptierst, auf wikipedia gibt es zb. drei verschiedene beweis-varianten. Wenn du dir eine aussuchst, und gruendlich durcharbeitest und verstehst, ist das doch voellig OK fuer eine uebungsaufgabe (und nicht unueblich bei solchen standard-aufgaben).
gruss
Matthias
>
>
|
|
|
|