www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Ungleichung,log.
Ungleichung,log. < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung,log.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 So 11.12.2011
Autor: sissile

Aufgabe
Bestimme die Lösungsmenge
1/e [mm] \le [/mm] log(3+2x) [mm] \le [/mm] e

Ich kann damit nicht wirklich was anfangen.
1/e [mm] \le [/mm] log(3+2x)
Was sollte ich da als erstes machen?

        
Bezug
Ungleichung,log.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 So 11.12.2011
Autor: MathePower

Hallo sissile,

> Bestimme die Lösungsmenge
>  1/e [mm]\le[/mm] log(3+2x) [mm]\le[/mm] e
>  Ich kann damit nicht wirklich was anfangen.
>  1/e [mm]\le[/mm] log(3+2x)
>  Was sollte ich da als erstes machen?


Auf beiden Seiten der Ungleichung
die Umkehrfunktion des log anwenden.


Gruss
MathePower

Bezug
                
Bezug
Ungleichung,log.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 So 11.12.2011
Autor: sissile

1/e $ [mm] \le [/mm] $ log(3+2x) $ [mm] \le [/mm] $ e

e?

[mm] e^{1/e} \le e^{log(3+2x)} \le e^{e} [/mm]


[mm] e^{1/e} \le [/mm] 3+2x [mm] \le e^{e} [/mm]

Welcher SChritt ist nun zu tun?
LG

Bezug
                        
Bezug
Ungleichung,log.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 So 11.12.2011
Autor: MathePower

Hallo sissile,

> 1/e [mm]\le[/mm] log(3+2x) [mm]\le[/mm] e
>
> e?
>  
> [mm]e^{1/e} \le e^{log(3+2x)} \le e^{e}[/mm]
>  
>
> [mm]e^{1/e} \le[/mm] 3+2x [mm]\le e^{e}[/mm]
>  
> Welcher SChritt ist nun zu tun?


Forme jetzt um nach x.


>  LG


Gruss
MathePower

Bezug
                                
Bezug
Ungleichung,log.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 So 11.12.2011
Autor: sissile

$ [mm] e^{1/e} \le [/mm] $ 3+2x
( [mm] e^{1/e} [/mm] - 3)/ 2 [mm] \le [/mm] x

3+2x $ [mm] \le e^{e} [/mm] $
x [mm] \le (e^{e} [/mm] -3 )/2

was soll [mm] e^{e} [/mm] bzw [mm] e^{e/2} [/mm] überhaupt bedeuten? SChaut komisch aus^^

Bezug
                                        
Bezug
Ungleichung,log.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Mo 12.12.2011
Autor: leduart

Hallo
jede zahl a kann man mit jedem Exponenten versehen zu [mm] a^r [/mm] dabei kann r auch a selbst oder 1/a sein. da [mm] e\approx [/mm] 2.7
liegt [mm] e^{1/e} [/mm] zwischen [mm] \wurzel{e} [/mm] und [mm] \wurzel[3]{2} [/mm]
und eê zwischen [mm] e^2 [/mm] und [mm] e^3 [/mm] etwa genauer sagt dir das dein TR
gruss leduart

Bezug
                                                
Bezug
Ungleichung,log.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:14 Mo 12.12.2011
Autor: sissile

$ [mm] e^{1/e} \le [/mm] $ 3+2x
( $ [mm] e^{1/e} [/mm] $ - 3)/ 2 $ [mm] \le [/mm] $ x

3+2x $ [mm] \le e^{e} [/mm] $
x $ [mm] \le (e^{e} [/mm] $ -3 )/2

( $ [mm] e^{1/e} [/mm] $ - 3)/ 2 $ [mm] \le [/mm] $ x [mm] \le (e^{e} [/mm] $ -3 )/2
Ist dass hier jetzt die Lösung oder wie? WIr dürfen keinen TR verwenden.

LG

Bezug
                                                        
Bezug
Ungleichung,log.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Mo 12.12.2011
Autor: leduart

Hallo
ja, das ist die Lösungsmenge, der TR war nur damit du siehst um was für Zahlen es sich etwa handelt. Er wäre ja auch nicht genau für e oder [mm] e^e [/mm]
Ob du die Lösungsmenge noch als Intervall schreiben sollst weisst du am besten.
gruss leduart

Bezug
                                                                
Bezug
Ungleichung,log.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Mo 12.12.2011
Autor: sissile

danke ;))
Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de