www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Ungleichung von Cauchy-Schwarz
Ungleichung von Cauchy-Schwarz < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung von Cauchy-Schwarz: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:53 Do 12.02.2009
Autor: trouff

Hallo liebe Mathefreunde!

Ich versuche gerade den Beweis der Cauchy-Schwarz Ungleichung nachzuvollziehen. soweit ist auch alles klar. Meine Frage ist aber, wie kommt man darauf, dass man so anfängt.

[mm] f(x)=\summe_{i=1}^{n}(ai [/mm] - [mm] xbi)^{2} [/mm]

und warum ist die Lösung des Beweises, nach aufstellen der p-q-Formel, der positive Wert unter der Wurzel.

Hier mal der Beweis der mir als Grundlage dient:

Sei [mm] \vec{a} ,\vec{b} \in R^{n} [/mm]

Dann gilt: [mm] |\vec{a} [/mm] * [mm] \vec{b}| \le |\vec{a}||\vec{b}| [/mm]

Beweis:

Es gilt: [mm] |\vec{a} [/mm] * [mm] \vec{b}| [/mm] =  [mm] | \summe_{i=1}^{n} [/mm] ai*bi|

sowie [mm] |\vec{a}||\vec{b}| [/mm] = [mm] \wurzel{\summe_{i=1}^{n} ai^{2} \summe_{i=1}^{n} bi^{2}} [/mm]

Somit haben wir zu zeigen:

[mm] | \summe_{i=1}^{n} [/mm] ai*bi| [mm] \le \wurzel{\summe_{i=1}^{n} ai^{2}} \wurzel{\summe_{i=1}^{n} bi^{2} } [/mm]

Den trivialen Fall hier lasse ich aus!

Sei f(x) = [mm] \summe_{i=1}^{n} [/mm] (ai - [mm] xbi)^{2} [/mm] x [mm] \in \IR [/mm]

[mm] \Rightarrow [/mm] f(x) [mm] \ge [/mm] 0 [mm] Ax\in \IR [/mm]

Dann f(x) ausklammern und f(x) = 0 setzen

und mit p-q-Formel lösen.

Damit es nicht soviel zu schreiben gibt alle Summen substituirt:

f(x) = 0 [mm] \gdw [/mm] x1,x2 = [mm] \bruch{B}{C} \pm \wurzel{\bruch{B^{2}}{C^{2}} - \bruch{A}{C}} [/mm]

Wenn man jetzt den Teil unter der Wurzel auflöst, dann bekommt man das zu Beweisende als Resultat. Aber warum macht man das so?

Mfg trouff


        
Bezug
Ungleichung von Cauchy-Schwarz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 So 15.02.2009
Autor: vivo

Hallo,

warum nicht? Es funktioniert, das reicht doch! Wie man auf Beweise etc. gekommen ist, ist doch höchstens didaktisch oder historisch von Interesse!

gruß

Bezug
                
Bezug
Ungleichung von Cauchy-Schwarz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 So 15.02.2009
Autor: pelzig


> warum nicht? Es funktioniert, das reicht doch! Wie man auf
> Beweise etc. gekommen ist, ist doch höchstens didaktisch
> oder historisch von Interesse!

Ich sehe das nicht so. Das Finden von Beweisen ist die "Schlüsseltechnologie" in der Mathematik. Die Frage, wie man auf einen Beweis gekommen ist, ist also durchaus gerechtfertigt, denn (leider?) sieht man das den Beweisen im nachhinein nicht mehr an.

Gruß, Robert

Bezug
        
Bezug
Ungleichung von Cauchy-Schwarz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 So 15.02.2009
Autor: pelzig

Hallo,

Ich verstehe den Beweis nicht so richtig.... also was kommt denn genau raus wenn man diesen "Wurzelausdruck auflöst"?Warum beweist das die Behauptung.

Was ich auch komisch finde... es ist [mm] $f(x)=|a-xb|^2=0\gdw [/mm] a=xb$, d.h. es kann nur eine Nullstelle geben, und zwar genau dann, wenn a und b lin. abhängig sind. Hilft dir das vielleicht irgendwie?

Gruß, Robert

Bezug
                
Bezug
Ungleichung von Cauchy-Schwarz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Mo 16.02.2009
Autor: trouff

Das bei der Funktion nur eine Nullstelle sein kann, weiß ich leider selber.
Hab ich wohl vergessen zu schreiben.

Wenn man den Wurzelausdruck auflöst kommt da raus
( [mm] \summe_{i=1}^{n}aibi)^2 \le \summe_{i=1}^{n}ai^2 [/mm] *  [mm] \summe_{i=1}^{n}bi^2 [/mm]

Das ist weil die p,q Formel im reellen ja nur für Wurzelausdruck [mm] \ge [/mm] 0 lösbar ist.

Mfg trouff

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de