www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichungen herleiten
Ungleichungen herleiten < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen herleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Mi 24.11.2010
Autor: UNR8D

Aufgabe
Es seien a,b [mm] \in [/mm] R und [mm] \varepsilon [/mm] > 0.
Leiten Sie die Ungleichungen
2|ab| [mm] \le \varepsilon [/mm] a² + [mm] 1/\varepsilon [/mm] b²
und
(a+b)² [mm] \le (1+\varepsilon) [/mm] a² [mm] +(1+1/\varepsilon) [/mm] b²
her.
Bestimmen Sie für welche a,b die Gleichheit gilt (in Abhängigkeit von [mm] \varepsilon [/mm] )

Hi,
mir fehlt leider gerade jede konstruktive Idee wie ich mit diesen Ungleichungen rumbasteln soll :o
Wäre sehr dankbar über einen kleinen Ansatz ;)

lg
Bastian

        
Bezug
Ungleichungen herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Mi 24.11.2010
Autor: fred97

Es ist $0 [mm] \le(\wurzel{\varepsilon}|a|- \bruch{1}{\wurzel{\varepsilon}}|b|)^2$ [/mm]

Jetzt binomische Formel

FRED

Bezug
        
Bezug
Ungleichungen herleiten: Ergebnisse als Tupel
Status: (Frage) beantwortet Status 
Datum: 19:49 Mi 24.11.2010
Autor: UNR8D

Aufgabe
Bestimmen Sie für welche a,b die Gleichheit gild, d.h. die Mengen
M1 := {(a,b) [mm] \in [/mm] R² | a,b erfüllen (1) mit "="}

Vielen Dank Fred!

Dass ich da nicht selbst ne binomische Formel erkannt habe :o
Naja manchmal sieht man einfach nix.

Habe für bei Gleichheit für die 1. (Un)Gleichung nun [mm] \varepsilon [/mm] |a| = |b| raus.
Also [mm] \varepsilon [/mm] (+-a) = +-b.
Zu unterscheiden sind doch nun nur die Fälle b= [mm] \varepsilon [/mm] a und b= [mm] -\varepsilon [/mm] a oder liege ich falsch?
Ist mein M1 dann mit {(a, [mm] \varepsilon [/mm] a), [mm] (a,-\varepsilon [/mm] a)} vollständig?



Bezug
                
Bezug
Ungleichungen herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Do 25.11.2010
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Bestimmen Sie für welche a,b die Gleichheit gild, d.h. die
> Mengen
>  M1 := {(a,b) [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

R² | a,b erfüllen (1) mit "="}

>  Vielen Dank Fred!
>  
> Dass ich da nicht selbst ne binomische Formel erkannt habe
> :o
>  Naja manchmal sieht man einfach nix.
>  
> Habe für bei Gleichheit für die 1. (Un)Gleichung nun
> [mm]\varepsilon[/mm] |a| = |b| raus.
>  Also [mm]\varepsilon[/mm] (+-a) = +-b.
>  Zu unterscheiden sind doch nun nur die Fälle b=
> [mm]\varepsilon[/mm] a und b= [mm]-\varepsilon[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

a oder liege ich falsch?

>  Ist mein M1 dann mit {(a, [mm]\varepsilon[/mm] a), [mm](a,-\varepsilon[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> a)} vollständig?

Die Schreibweise ist nicht in Ordnung.

$M_1=  \{ (a,\varepsilon*a), (a,-\varepsilon *a) : a \in \IR\} $

FRED

>  
>  


Bezug
                        
Bezug
Ungleichungen herleiten: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Do 25.11.2010
Autor: UNR8D

Alles klar, vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de