www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Uniform Integrability/Reihe ab
Uniform Integrability/Reihe ab < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uniform Integrability/Reihe ab: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:09 Di 23.09.2008
Autor: Arthur

Aufgabe
Seien [mm](X_{n})n\in\mathbb{N}, X[/mm] reellwertige positive Zufallsvariablen. Wir wissen [mm]\mathbb{E}[X_{n}]=\mu, \mathbb{E}[X]=\mu.\\ und \quad X_{n} ---> X schwach \exp(X_{n})=C\sum^{n}_{k=1}\dbinom{n}{k}\left(\frac{1}{2}\right)^{n}(\exp(\frac{2k-n}{\sqrt{n}})\\ Zeige \quad (\exp(X_{n}))n\in\mathbb{N}\mbox{ sind uniformly integrable.}[/mm]

Ich bin mir nicht sicher, ob man es so schon verstehen/lösen kann.
[mm]X_{n}[/mm] hat die Form [mm]X_{n}=CX^{*}_{n}+\mu[/mm] wobei [mm]X^{*}_{n}[/mm] eine standardisierte binomialverteilte Zufallsvariable ist und C eine konstante.
X , gegen die die Xn schwach konvergieren ist Normalverteilt.
Wir wollen eigentlich die Konvergenz von
[mm]\int_{\mathbb{R}_{+}}\exp(X_{n})dP \longrightarrow \int_{\mathbb{R}_{+}}\exp(X)dP [/mm]
also, dass der erwartungswert der logbinomialverteilten zufallsvariable exp(Xn) gegen den der lognormalverteilten zufallsvariable X konvergiert.
dies ist z.b. dann der fall, wenn die exp(Xn) uniformly integrable sind.
oben sieht man die form von Xn. ich habe es allerdings bisher mit keiner abschätzung zeigen können, dass der erwartungswert existiert (auch wenn das bekannt ist. es handelt sich hier um den grenzwert des erwartungswertes des aktienpreises im binomialmodell und der ist ja bekanntlich der des black scholes modells.
wenn es also irgendwie ginge, die reihe oben abzuschätzen wäre es natürlich geschafft.
ansonsten könnte man vielleicht ausnutzen dass der erwartungswert von den Xn bekannt ist und gleich dem von X. zudem ist ja der erwartungswert von exp(X) auch bekannt, da exp(X) lognormal verteilt ist.
man muss irgendwie ausnutzen können, dass es zwar kein maximum über alle n für [mm]X_{n}[/mm] gibt, aber die masse der verteilung um [mm]\mu[/mm] liegt.
ich habe jetzt schon seit einigen tagen darüber nachgedacht und komme wirklich nicht weiter.  vielleicht hat ja jemand eine idee. vielen dank!
ich habe das problem auch sonst nirgendwo veröffentlicht.


        
Bezug
Uniform Integrability/Reihe ab: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:37 Do 25.09.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de