Unklar Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:56 Do 28.05.2009 | Autor: | Dinker |
Aufgabe | Aus einer Urne mit 15 Kugeln, welche die Nummern 1 bis 15 tragen, werden vier Kugeln gleichzeitig gezogen. Wieviele Möglichkeiten habe ich, dass die Summe der vier Zahlen ungerade ist? |
Guten Tag
Ich habe hier Probleme
1. Möglichkeit: 3 Ungerade + 1 Gerade
Die Reihenfolge spielt ja absolut keine Rolle ob ich nun GGGU oder UGGG etc. würfle
= [mm] \bruch{8*7*6*7}{4!} [/mm] = 98
Nun ist mein Problem müsste ich nun noch 98 * 4 rechnen = 392.
Doch ich habe meine Probleme mit dem * 4. Denn die Reihenfolge spielt ja keine Rolle, aber mit dem *4 sagt man doch gerade, dass sie in gewisser Hinsicht doch eine Rolle spielt?
2. Möglichkeit: 1 Gerade + 3 Ungerade
.....................
Danke
Gruss Dinker
|
|
|
|
Hallo dinker,
du kannst das hier wie folgt modellieren:
in der Urne sind 8 rote Kugeln (ungerade Zahlen) und 7 blaue (gerade Zahlen), du ziehst gleichzeitig, also ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge.
Jetzt ist A: "Die Summe der 4 Zahlen ist ungerade" das zu untersuchende Ereignis.
Du sagst richtig (vermutlich machst du nur einen Paste&Copy-Fehler), dass die Summe dann ungerade ist, wenn genau eine oder wenn genau drei Kugeln ungerade sind, d.h. im Modell, wenn genau eine oder wenn genau drei rote Kugeln aus den 8 gezogen werden und dazu dann drei bzw. eine blaue Kugel von den vorhandenen 7.
Die W-keit berechnest du dann mit den Binomialkoeffizienten, also:
[mm][mm] P(A)=\bruch{\vektor{7 \\ 3}*\vektor{8 \\ 1}+\vektor{7 \\ 1}*\vektor{8 \\ 3}}{\vektor{15 \\ 4}}.
[/mm]
Damit hast du meiner Ansicht nach alles berücksichtigt, was zu berücksichtigen ist.
Gruß,
weightgainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:29 Do 28.05.2009 | Autor: | Dinker |
Hallo
Danke
Also Anmerkung noch zwei Beispiele, wo ich nicht klar komme
Ich habe insgesamt 10 Kugeln, davon 6 blaue und 4 rote. Wie gross ist die Wahrscheinlichkeit, dass ich 2 blaue und 1 rote ziehe?
P(E) = [mm] \bruch{\bruch{6*5*4}{3!}*3}{\vektor{10 \\ 3}} [/mm] = 0.5
Ich habe insgesamt 10 Kugeln, davon 4 blaue und 5 rote und 1 Grüne. Wie gross ist die Wahrscheinlichkeit, dass ich 2 blaue und 1 rote und 1 grüne ziehe?
P(E) = [mm] \bruch{\bruch{4*3*5*1}{4!}*?}{\vektor{10 \\ 4}} [/mm] = ?
Danke
gruss Dinker
|
|
|
|
|
Ja, passt schon nicht so schlecht. Ich schreibe die Anzahlen lieber als Binomialkoeffizienten, dann sähe das so aus (ich nehme immer an, dass es wie eben ist - ohne zurücklegen und ohne Reihenfolge):
[mm]P(E)=\bruch{\vektor{6 \\ 2}*\vektor{4 \\ 1}}{\vektor{10 \\ 3}}[/mm]
Da sieht man eher den Zusammenhang zur Aufgabe: ich will 2 aus 6 ziehen und 1 von 4. Insgesamt sind das 3 von 10. Ich finde es dann einfacher, die Anzahlen so wie oben zu schreiben. Das kannst du natürlich auch anders schreiben, z.B. als [mm]\bruch{6*5}{2}[/mm] für die verschiedenen Möglichkeiten, 2 blaue zu ziehen. Denn für die erste blaue hast du 6 Möglichkeiten, für die zweite noch 5, also [mm]6*5[/mm], aber dann hast du alles doppelt gezählt (weil dich die Reihenfolge nicht interessiert), und deswegen nochmal durch 2.
Im zweiten Beispiel sind das dann also 2 aus 4, 1 aus 5 und 1 aus 1, insgesamt 4 aus 10:
[mm]P(E)=\bruch{\vektor{4 \\ 2}*\vektor{5 \\ 1}*\vektor{1 \\ 1}}{\vektor{10 \\ 4}}[/mm]
Natürlich kannst du das [mm] \vektor{1 \\ 1} [/mm] auch weglassen, weil es nur eine Möglichkeit gibt und natürlich kannst du statt [mm] \vektor{5 \\ 1} [/mm] auch direkt 5 schreiben. Das ändert ja nichts.
Gruß,
weightgainer
|
|
|
|