Untergruppe, Erzeugnis < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Hallo,
wenn $G$ eine endliche Gruppe ist, dann gilt:
Für jedes [mm] $g\in [/mm] G$ ist $ord(g)$ ein Teiler von $|G|$.
Der Beweis nutzt aus, dass [mm] $\langle g\rangle$ [/mm] eine Untergruppe ist.
Dies wurde aber anscheinend nicht gezeigt. Dies möchte ich nachholen.
Sei also [mm] $g\in [/mm] G$ beliebig mit $ord(g)=d$. Dann ist [mm] $\langle g\rangle=\{e=g^d, g, \dotso, g^{d-1}\}$. [/mm] Offensichtlich ist [mm] $e\in\langle g\rangle$. [/mm]
Sei [mm] $i,j\in \langle g\rangle$. [/mm] Dann ist [mm] $i=g^a$ [/mm] und [mm] $j=g^b$, [/mm] mit [mm] $a,b\in\{1,\dotso, d\}$.
[/mm]
Zeigen muss ich, dass [mm] $ij^{-1}\in\langle g\rangle$.
[/mm]
Ich betrachte also [mm] $g^{a-b}$. [/mm] Nun schreibe ich $a-b=cd+r$ durch Division mit Rest.
Also ist [mm] $g^{a-b}=g^{cd+r}=g^{cd}g^{r}=eg^r=g^r$. [/mm] Da [mm] $0\leq [/mm] r<d$ ist also [mm] $g^{a-b}\in\langle g\rangle$.
[/mm]
Gilt die Aussage auch für unendliche Gruppen?
Der "Beweis" benutzt die Endlichkeit der Gruppe im Grunde ja gar nicht. Nur weiß ich nicht, ob in unendlichen Gruppen jedes Element zwangsläufig eine endliche Ordnung haben muss.
Vielen Dank im voraus.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:43 Fr 15.07.2016 | Autor: | hippias |
Der Nachweis ist schon in Orsnung, ich möchte aber auf folgendes Hinweisen. Höchstwahrschienlich ist $<g>$ nach Definition eine Untergruppe, nämlich die kleinste Untergruppe, die $g$ enthält, sodass ein Nachweis, dass es sich um eine Untergruppe handelt, überflüssig wäre. Sinnvoll ist aber sich zu überlegen, dass $<g>= [mm] \{e,g,\ldots, g^{d-1}\}$ [/mm] ist.
Deine Rechnung hat gezeigt, dass die rechte Seite eine Untergruppe ist. Natürlich enthält sie $g$, sodass aufgrund der Minimalität [mm] $\subseteq \{e,g,\ldots, g^{d-1}\}$ [/mm] folgt. Da [mm] $g\in [/mm] <g>$ ist und $<g>$ unter Potenzen abgeschlossen ist, ist auch die rechte Seite in $<g>$ enthalten, und somit die Mengen gleich.
Zuletzt: in unendlichen Gruppen können die Ordnungen von Elementen unendlich sei. Aussagen wie [mm] $\infty$ [/mm] teilt [mm] $\infty$ [/mm] sind oft nicht sinnvoll. Du kannst aber nachrechnen, dass $<g>= [mm] \{g^{l}|l\in \IZ\}$ [/mm] gilt.
|
|
|
|
|
> Höchstwahrschienlich ist $ <g> $ nach Definition eine Untergruppe, nämlich die kleinste Untergruppe, die $ g $ enthält
Wir haben [mm] $\langle .\rangle$ [/mm] eigentlich konkret nur für Mengen definiert und nicht einzelne Elemente.
Oder ist hier die Konvention, dass man [mm] $\langle g\rangle$ [/mm] anstelle von [mm] $\langle\{g\}\rangle$ [/mm] schreibt?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:58 Fr 15.07.2016 | Autor: | fred97 |
> > Höchstwahrschienlich ist [mm][/mm] nach Definition eine
> Untergruppe, nämlich die kleinste Untergruppe, die [mm]g[/mm]
> enthält
>
> Wir haben [mm]\langle .\rangle[/mm] eigentlich konkret nur für
> Mengen definiert und nicht einzelne Elemente.
> Oder ist hier die Konvention, dass man [mm]\langle g\rangle[/mm]
> anstelle von [mm]\langle\{g\}\rangle[/mm] schreibt?
so ist es.
fred
|
|
|
|
|
Ok, dann hat sich die Frage geklärt.
Nur wurde es ja so definiert, dass es eine Untergruppe ist. Ich habe mich gewundert, warum man nicht zeigt, dass dies "wohldefiniert" ist, also auch tatsächlich eine Untergruppe entsteht.
Die Frage hat sich aber mittlerweile geklärt, weil der Schnitt von Untergruppen ja wieder eine Untergruppe ist, und so definiert man das Erzeugnis ja...
Es ist also trivial.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:55 So 17.07.2016 | Autor: | hippias |
Ich habe die Frage in eine Mitteilung umgewandelt. Wenn dies nicht gewünscht war, bitte melden.
|
|
|
|
|
Ich hatte mir vielleicht noch erhofft, dass die von mir genannten Punkte in der Frage bestätigt, oder korrigiert werden.
Da das nicht der Fall war, bin ich davon ausgegangen, dass es so korrekt ist.
|
|
|
|