www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Untergruppe zyklischer Gruppe
Untergruppe zyklischer Gruppe < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppe zyklischer Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Fr 13.05.2011
Autor: Teufel

Aufgabe
Sei G eine zyklische Gruppe der Ordnung n und r ein Teiler von n. Zeige: Es gibt genau eine Untergruppe U mit ord(U)=r.

Hi!

Also eine Untergruppe anzugeben, die Ordnung r hat, ist ja leicht. [mm] (, [/mm] wobei g der Erzeuger von G ist).
Aber wie kann ich zeigen, dass es die einzige ist?

Ich wollte irgendwie so anfangen: Sei V eine weitere Untergruppe, ord(V)=r.
Nun wollte ich zeigen, dass [mm] g^\frac{n}{r} \in [/mm] V sein muss, denn dann würde schon die Gleichheit folgen. Aber ich weiß nicht so recht, wie ich das anstellen kann.

        
Bezug
Untergruppe zyklischer Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Fr 13.05.2011
Autor: felixf

Moin!

> Sei G eine zyklische Gruppe der Ordnung n und r ein Teiler
> von n. Zeige: Es gibt genau eine Untergruppe U mit
> ord(U)=r.
>  Hi!
>  
> Also eine Untergruppe anzugeben, die Ordnung r hat, ist ja
> leicht. [mm](,[/mm] wobei g der Erzeuger von G ist).
>  Aber wie kann ich zeigen, dass es die einzige ist?
>  
> Ich wollte irgendwie so anfangen: Sei V eine weitere
> Untergruppe, ord(V)=r.
>  Nun wollte ich zeigen, dass [mm]g^\frac{n}{r} \in[/mm] V sein muss,
> denn dann würde schon die Gleichheit folgen. Aber ich
> weiß nicht so recht, wie ich das anstellen kann.

Schau dir die Abbildung [mm] $\varphi [/mm] : G [mm] \to [/mm] G$, $x [mm] \mapsto x^r$ [/mm] an. Der Kern davon ist gerade [mm] $\langle g^{n/r} \rangle$ [/mm] (warum?).

Beachte jetzt, dass jede Untergruppe $V$ mit $r$ Elementen [mm] $\varphi(V) [/mm] = [mm] \{ e \}$ [/mm] erfuellt (warum?), also $V [mm] \subseteq \ker \varphi$. [/mm]

LG Felix


Bezug
                
Bezug
Untergruppe zyklischer Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 Sa 14.05.2011
Autor: Teufel

Hallo, mein Freund der Zahlentheorie!

Vielen Dank für deine Hilfe. Mit dieser Abbildung löst sich alles in Wohlgefallen auf. Ich wäre aber wohl die nächster Zeit nicht darauf gekommen, einfach diese Abbildung zu betrachten. Wie macht man so etwas immer nur? ;)

Ich habe jetzt deine Anleitung befolgt und alles gezeigt, was du vorgegeben hast. Nun hat man $V [mm] \subseteq ker(\varphi)$ [/mm] und weil V und [mm] ker(\varphi) [/mm] gleich viele Elemente haben, muss bereits Gleichheit gelten, also  [mm] $V=ker(\varphi)$. [/mm]

Danke nochmals!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de