www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Untergruppen
Untergruppen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:16 Mo 15.12.2008
Autor: Zerwas

Aufgabe
Sei G eine Gruppe mit Untergruppen [mm] H_1,H_2 \subset [/mm] G.
Man zeige, dass [mm] H_1 \cup H_2 [/mm] genau dann eine Untergruppe von G ist wenn [mm] H_1 \subset H_2 [/mm] oder [mm] H_2 \subset H_1 [/mm]

Ich wollte einfach nur fragen ob meine Gedanken so passen:

[mm] \Rightarrow: [/mm]
Das 1-Element liegt auf jeden Fall in [mm] H_1 \cup H_2, [/mm] da [mm] H_1 [/mm] und [mm] H_2 [/mm] bereits Untergruppen sind und somit beide das 1_Element aus G auch enthalten.

Nehme man nun an [mm] H_1 [/mm] und [mm] H_2 [/mm] würden nicht ineinander liegen
[mm] \Rightarrow \exists [/mm] a [mm] \in H_1, a\not\in H_2 [/mm] und b [mm] \in H_2 [/mm] , b [mm] \not\in H_1 [/mm]
[mm] \Rightarrow [/mm] ab [mm] \not\in H_1 [/mm] und ab [mm] \not\in H_2 [/mm]
[mm] \Rightarrow [/mm] ab [mm] \not\in H_1\cup H_2 [/mm]
[mm] \Rightarrow H_1\cup H_2 [/mm] is keine Untergruppe von G
[mm] \Rightarrow [/mm] falsche Annahme

[mm] \Leftarrow [/mm]
Liegen [mm] H_1 [/mm] und [mm] H_2 [/mm] ineinander, dann ist die Vereinigung gerade die "größere" Menge und diese ist n.V. Untergruppe von G

Kann man das so machen?

Danke und Gruß Zerwas

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.

        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Mo 15.12.2008
Autor: statler

Hi!

> Sei G eine Gruppe mit Untergruppen [mm]H_1,H_2 \subset[/mm] G.
>  Man zeige, dass [mm]H_1 \cup H_2[/mm] genau dann eine Untergruppe
> von G ist wenn [mm]H_1 \subset H_2[/mm] oder [mm]H_2 \subset H_1[/mm]
>  Ich
> wollte einfach nur fragen ob meine Gedanken so passen:
>  
> [mm]\Rightarrow:[/mm]
>  Das 1-Element liegt auf jeden Fall in [mm]H_1 \cup H_2,[/mm] da [mm]H_1[/mm]
> und [mm]H_2[/mm] bereits Untergruppen sind und somit beide das
> 1_Element aus G auch enthalten.
>  
> Nehme man nun an [mm]H_1[/mm] und [mm]H_2[/mm] würden nicht ineinander
> liegen
>  [mm]\Rightarrow \exists[/mm] a [mm]\in H_1, a\not\in H_2[/mm] und b [mm]\in H_2[/mm]
> , b [mm]\not\in H_1[/mm]
>  [mm]\Rightarrow[/mm] ab [mm]\not\in H_1[/mm] und ab [mm]\not\in H_2[/mm]

Hier könnte man vielleicht noch sagen, warum das so ist, aber sonst...

> [mm]\Rightarrow[/mm] ab [mm]\not\in H_1\cup H_2[/mm]
>  [mm]\Rightarrow H_1\cup H_2[/mm]
> is keine Untergruppe von G
>  [mm]\Rightarrow[/mm] falsche Annahme
>  
> [mm]\Leftarrow[/mm]
>  Liegen [mm]H_1[/mm] und [mm]H_2[/mm] ineinander, dann ist die Vereinigung
> gerade die "größere" Menge und diese ist n.V. Untergruppe
> von G

...ist das völlig paletti.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de