www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Untermannigfaltigkeit
Untermannigfaltigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit: Tangentialraum
Status: (Frage) beantwortet Status 
Datum: 20:36 Do 03.07.2014
Autor: YuSul

Aufgabe
Sei [mm] N=\{(x,y,z)\in\mathbb{R}|(\sqrt{x^2+y^2}-6)^2+z^2=25\} [/mm]

a) Beweisen Sie, dass $N$ eine Untermannigfaltigkeit des [mm] $\mathbb{R}^3$ [/mm] ist und skizzieren Sie diese.

b) Berechnen Sie den Tangentialraum [mm] $T_{p} [/mm] N$

Hi,

ich habe eine Frage zu dieser Aufgabe.
Und zwar ist mir noch nicht so ganz klar was eine Untermannigfaltigkeit meint.
Könnte mir jemand noch einmal erklären was man unter einer Untermannigfaltigkeit versteht?

Ich habe es so verstanden, dass eine Untermannigfaltigkeit etwas ist womit ich ein Objekt höherer Dimension "füllen" kann. Zum Beispiel kann ich eine drei Dimensionale Kugel mit zwei Dimensiolanen Flächen "überdecken". Also ist der [mm] $\mathbb{R}^2$ [/mm] eine Untermannigfaltigkeit der Kugel?

Wie beweise ich, dass sich etwas um eine Untermannigfaltigkeit handelt? Ich finde die Definition recht kompliziert...

        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 06:17 Fr 04.07.2014
Autor: fred97


> Sei [mm]N=\{(x,y,z)\in\mathbb{R}|(\sqrt{x^2+y^2}-6)^2+z^2=25\}[/mm]
>  
> a) Beweisen Sie, dass [mm]N[/mm] eine Untermannigfaltigkeit des
> [mm]\mathbb{R}^3[/mm] ist und skizzieren Sie diese.
>  
> b) Berechnen Sie den Tangentialraum [mm]T_{p} N[/mm]
>  Hi,
>  
> ich habe eine Frage zu dieser Aufgabe.
>  Und zwar ist mir noch nicht so ganz klar was eine
> Untermannigfaltigkeit meint.
> Könnte mir jemand noch einmal erklären was man unter
> einer Untermannigfaltigkeit versteht?
>  
> Ich habe es so verstanden, dass eine Untermannigfaltigkeit
> etwas ist womit ich ein Objekt höherer Dimension "füllen"
> kann. Zum Beispiel kann ich eine drei Dimensionale Kugel
> mit zwei Dimensiolanen Flächen "überdecken". Also ist der
> [mm]\mathbb{R}^2[/mm] eine Untermannigfaltigkeit der Kugel?
>  
> Wie beweise ich, dass sich etwas um eine
> Untermannigfaltigkeit handelt? Ich finde die Definition
> recht kompliziert...

Man mag es bedauern, aber ändern kann man es nicht ....

Da musst Du durch. Wenn ich Dir einen Vektorraum V in die Hand drücke und eine Teilmenge U von V, und Dich bitte, dass Du zeigst, dass U ein Untervektorraum von V ist, so bleibt Dir i.a. nichts anderes übrig, als das Untervektorraumkriterium abzuarbeiten.

So auch hier

FRED


Bezug
                
Bezug
Untermannigfaltigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 06:32 Fr 04.07.2014
Autor: YuSul

Das was mich an der Definition am meisten abschreckt ist, dass man einen [mm] $C^l$-Diffeomorphismus [/mm] benötigt.

Ich muss ja zeigen, dass für jedes [mm] p\in [/mm] N eine offene Umgebung U von p gibt mit eben einem solchen Diffeomorphismus.

[mm] $\phi:U\toU^{~}\subset \mathbb{R}^n$ [/mm] mit [mm] ($U^{~}$ [/mm] ist offen)

[mm] $\phi(U\cap N)=U^{~}\cap\mathbb{R}^k$ [/mm]

[mm] $l\geq [/mm] 1$ und [mm] $k\leq [/mm] n$

Ich brauch nun also eine bijektive Abbildung deren Umkehrfunktion ebenfalls stetig differenzierbar ist.
Diese muss für jeden Punkt gleich sein, oder? Ich brauche also nicht für verschiedene Punkte aus N verschiedene Abbildungen?

Bezug
                        
Bezug
Untermannigfaltigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 So 06.07.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de