www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Untermannigfaltigkeit
Untermannigfaltigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:06 So 25.10.2009
Autor: julsch

Aufgabe
Man identifiziere [mm] \IR^{n²} [/mm] mit dem Raum M [mm] (n,\IR) [/mm] der reellen (n x n)-Matrizen und betrachte die Untergruppe SL(n, [mm] \IR) [/mm] = {A [mm] \in [/mm] M (n, [mm] \IR) [/mm] | det A = 1} [mm] \subset [/mm] GL(n, [mm] \IR) [/mm] der invertierbaren Matrizen mit Determinante 1.
(a) Zeigen Sie, dass SL(n, [mm] \IR) [/mm] eine Untermannigfaltigkeit von [mm] \IR^{n²} [/mm] ist.
(b) Beweisen Sie für den Tangentialraum an der Einheitsmatrix id:
                 [mm] T_{id}SL(n, \IR) [/mm] = { B [mm] \in [/mm] M(n, [mm] \IR) [/mm] | Spur B =0}.
     kursiv Hinweis:
       Zeigen Sie, dass für differenzierbare Kurven A: [mm] \IR \to [/mm] M(n, [mm] \IR) [/mm] mit A(0)=id gilt:
     [mm] \bruch{d}{dt}|_{t=0} [/mm] det A(t) = Spur A´(0).

Wir haben in der Vorlesung Untermannigfaltigkeit besprochen, jedoch weiß ich nicht genau, wie ich es in die Aufgabe anwenden muss. Kann mir jemand weiterhelfen?

LG Julsch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:08 Mo 26.10.2009
Autor: MatthiasKr

Hallo,
> Man identifiziere [mm]\IR^{n²}[/mm] mit dem Raum M [mm](n,\IR)[/mm] der
> reellen (n x n)-Matrizen und betrachte die Untergruppe
> SL(n, [mm]\IR)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {A [mm]\in[/mm] M (n, [mm]\IR)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

| det A = 1} [mm]\subset[/mm] GL(n,

> [mm]\IR)[/mm] der invertierbaren Matrizen mit Determinante 1.
>  (a) Zeigen Sie, dass SL(n, [mm]\IR)[/mm] eine Untermannigfaltigkeit
> von [mm]\IR^{n²}[/mm] ist.
>  (b) Beweisen Sie für den Tangentialraum an der
> Einheitsmatrix id:
>                   [mm]T_{id}SL(n, \IR)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { B [mm]\in[/mm] M(n, [mm]\IR)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

|

> Spur B =0}.
>      kursiv Hinweis:
>         Zeigen Sie, dass für differenzierbare Kurven A:
> [mm]\IR \to[/mm] M(n, [mm]\IR)[/mm] mit A(0)=id gilt:
>       [mm]\bruch{d}{dt}|_{t=0}[/mm] det A(t) = Spur A´(0).
>  Wir haben in der Vorlesung Untermannigfaltigkeit
> besprochen, jedoch weiß ich nicht genau, wie ich es in die
> Aufgabe anwenden muss. Kann mir jemand weiterhelfen?
>  

Also die aufgabe vorrechnen werde ich nicht, aber vielleicht kann ich ein paar ideen beisteuern. ich denke, beide aufgabenteile laufen darauf hinaus, dass du ableitungen von determinanten berechnen musst. Ich weiss nicht, wieviel ihr voraussetzen koennt, aber []hier gibt es zum beispiel die wichtigsten regeln.

zu a): hast du eine funktion [mm] $\phi:\mathbb{R}^n\to \mathbb{R}$ [/mm] gegeben, so ist [mm] $\phi^{-1}(a)$ [/mm] eine U-mfk. falls [mm] $\nabla \phi(x)\ne [/mm] 0$ fuer alle [mm] $x\in \phi^{-1}(a)$. $\phi$ [/mm] nennt man dann eine submersion. Diese eigenschaft musst du fuer die det-funktion pruefen mit $a=1$.

zu b): wenn du den tip zeigen kannst, steht das ergebnis fuer den tangential-raum schon da. Als veranschaulichung kannst du wieder eine einfache flaeche nehmen, die als niveau-menge [mm] $\phi=a$ [/mm] gegeben ist. zb. die sphaere [mm] $\phi(x)=\|x\|=1$. [/mm] Fuer kurven $c$ auf der flaeche ergibt sich
[mm] $0=\frac{d}{dt} \phi(c(t))=\nabla\phi\cdot [/mm] c'$. Deshalb ist der tangentialraum an solchen niveauflaechen durch diejenigen vektoren gegeben, die senkrecht auf dem gradienten von [mm] $\phi$ [/mm] stehen.

gruss
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de