www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Untermannigfaltigkeit
Untermannigfaltigkeit < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Mi 17.11.2010
Autor: Salamence

Aufgabe
Sei [mm] f:X\to [/mm] M glatt und [mm] g:Y\to [/mm] M sei eine eingebettete Untermannigfaltigkeit.
f und g liegen schief zueinander, d. h.:
[mm] \forall p\in Bild(f)\cap [/mm] Bild(g): [mm] T_{p}(M)=span(Bild(T_{x}(f)\cup Bild(T_{y}(g))) [/mm] für alle [mm] x\in f^{-1}(p) [/mm] und [mm] y\in g^{-1}(p) [/mm]

Zeigen Sie: [mm] N:=f^{-1}(Bild(f)\cap [/mm] Bild(g)) ist eine eingebettete Untermannigfaltigkeit von X.

Hi ho!

Also ich habe Schwierigkeiten, überhaupt zu verstehen, was dieses schief zueinander nun genau meint...

Na egal...

Zu zeigen ist ja nun "nur", dass N eine eingebettete Untermannigfaltigkeit von X ist. Dafür braucht man ja erstmal ne Abbildung und da ist doch die Inklusion/Identität auf N naheliegend, da N ja schon in X liegt...

zu zeigen ist dann:
[mm] \iota:N\to [/mm] X ist glatt und injektiv
[mm] T_{x}(\iota) [/mm] ist injektiv für alle [mm] x\in [/mm] N
[mm] \iota=Id_{N} [/mm] ist ein Homöomorphismus

So jetzt sollte das doch alles klar sein oder nicht? Wo soll da was von den Voraussetzungen eingehen????

Irgendwie muss ich wohl die Aufgabe überhaupt nicht verstanden haben.

        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Mi 17.11.2010
Autor: meili

Hallo Salamence,

> Sei [mm]f:X\to[/mm] M glatt und [mm]g:Y\to[/mm] M sei eine eingebettete
> Untermannigfaltigkeit.
>  f und g liegen schief zueinander, d. h.:
> [mm]\forall p\in Bild(f)\cap[/mm] Bild(g):
> [mm]T_{p}(M)=span(Bild(T_{x}(f)\cup Bild(T_{y}(g)))[/mm] für alle
> [mm]x\in f^{-1}(p)[/mm] und [mm]y\in g^{-1}(p)[/mm]
>  
> Zeigen Sie: [mm]N:=f^{-1}(Bild(f)\cap[/mm] Bild(g)) ist eine
> eingebettete Untermannigfaltigkeit von X.
>  Hi ho!
>  
> Also ich habe Schwierigkeiten, überhaupt zu verstehen, was
> dieses schief zueinander nun genau meint...

Ich nehme an, dass mit [mm] $T_s(Z)$ [/mm] der Tangentialraum zu Z im Punkt s gemeint ist.
Dann ist mit f und g liegen schief zueinander ganz anschaulich gemeint, dass die Bilder von f und g in M nicht "parallel" liegen, sondern in jedem Punkt Ihres Schnittes den Tangentialraum zu M in diesem Punkt sich aus den Bildern der Tangentialräumen Ihrer Urbilder aufspannen lässt.

>  
> Na egal...
>  
> Zu zeigen ist ja nun "nur", dass N eine eingebettete
> Untermannigfaltigkeit von X ist. Dafür braucht man ja
> erstmal ne Abbildung und da ist doch die
> Inklusion/Identität auf N naheliegend, da N ja schon in X
> liegt...

Ja, $N [mm] \subseteq [/mm] X$.
Aber muss man nicht auch zeigen, dass X eine Mannigfaltigkeit ist?

>  
> zu zeigen ist dann:
>  [mm]\iota:N\to[/mm] X ist glatt und injektiv
>  [mm]T_{x}(\iota)[/mm] ist injektiv für alle [mm]x\in[/mm] N
>  [mm]\iota=Id_{N}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ist ein Homöomorphismus
Eine Teilmenge N einer n-dimensionalen Mannigfaltigkeit X ist genau dann eine k-dimensionale eingebettete Untermannigfaltigkeit, wenn für jeden Punkt p $\in$ N eine Karte $(\varphi,U)$ von X existiert, so dass die Gleichung

   $ \varphi(N\cap U)$ = $(\IR}^k \times 0) \cap \varphi(U)$

erfüllt ist. Das Zeichen 0 $\in \IR^{n-k}$ bezeichnet hier ein (n-k)-Tupel.
(Vergleiche []eingebettete Untermannigfaltigkeit)

Ja, vielleicht kannst Du in diesem Fall  für $ [mm] \varphi$ [/mm] die  Inklusion/Identität auf N und U = N wählen.

>  
> So jetzt sollte das doch alles klar sein oder nicht? Wo
> soll da was von den Voraussetzungen eingehen????
>  
> Irgendwie muss ich wohl die Aufgabe überhaupt nicht
> verstanden haben.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de