www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Untermannigfaltigkeit beweisen
Untermannigfaltigkeit beweisen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit beweisen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:58 So 12.06.2005
Autor: Lessa

Hallo,

haben die Menge T:= [mm] \{ \vektor{x \\ y \\ z} \in \IR^{3} | z^{2}+( \wurzel{x^{2}+y^{2}}-R)^{2}=a^{2} \} [/mm] mit 0<a<R gegeben und sollen nun zeigen, dass T eine zweidimensionale Untermannigfaltigkeit von [mm] \IR^{3} [/mm] ist.

Laut Vorlesung ist das eine U. wenn für alle x [mm] \in [/mm] T eine Umgebung V existiert und n-d Funktionen [mm] f_{i}:V \to \IR [/mm]  so dass
1. T [mm] \cap [/mm] V = [mm] \{x \in V | f(x)=0 \} [/mm]
2. die gradienten  grad [mm] f_{1}(x), [/mm] ...grad [mm] f_{n-d}(x) [/mm] sind linear unabhängig.

Dabei ist hier n=3 und d=2.
Also muss man nur eine Funktion finden, die die Bedingungen erfüllt. Damit ist doch aber die zweite Bedingung sofort erfüllt?
Reicht es jetzt, wenn ich eine Funktion f finde und als Umgebung ganz [mm] \IR^{3} [/mm] wähle?
Dazu habe ich mir überlegt, dass
T=  [mm] \{ \vektor{x \\ y \\ z} \in \IR^{3} | z^{2}+( \wurzel{x^{2}+y^{2}}-R)^{2}=a^{2} \} [/mm]
= [mm] \{ \vektor{x \\ y \\ z= \wurzel{a^{2}-( \wurzel{x^{2}+y^{2}}-R)^{2}}} \in \IR^{3} \} [/mm]
=  [mm] \{ \vektor{x \\ y \\ z} \in \IR^{3} |f(x,y,z)=0 \} [/mm]
Wenn ich [mm] f:\IR^{3} \to \IR [/mm] definiere als [mm] f(x,y,z)=a^{2}-( \wurzel{x^{2}+y^{2}}-R)^{2}-z^{2} [/mm]
Aber irgendwie mach ichs mir da vermutlich wiedermal ein wenig zu einfach oder? Kann mir irgendwer helfen, die Haken an der Aufgabe zu finden?

        
Bezug
Untermannigfaltigkeit beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 13.06.2005
Autor: qwert

hallo

>Also muss man nur eine Funktion finden, die die Bedingungen

> erfüllt. Damit ist doch aber die zweite Bedingung sofort
> erfüllt?

nein der Gradient könnte Nullstellen in T haben.

qwert

Bezug
                
Bezug
Untermannigfaltigkeit beweisen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 08:57 Di 14.06.2005
Autor: Lessa

Der Gradient ist wenn ich das richtig sehe
[mm] \vektor{-2x(1-R(x^{2}+y^{2})^{- \bruch{1}{2}} \\ -2y(1-R(x^{2}+y^{2})^{- \bruch{1}{2}} \\ -2z } [/mm]
Somit müsste es doch genügen, die Umgebung auf  
[mm] \IR^{3} \backslash \vektor{0 \\ 0 \\ z} [/mm] einzuschränken. damit gäbe es keine Nullstelle des Gradienten und der Torus wäre immernoch vollständig in der Umgebung enthalten, da mit x=y=0  [mm] z^{2}+R^{2}=a^{2} \gdw [/mm] z= [mm] \wurzel{a^{2}-R^{2}} [/mm] da aber R>a nach Voraussetzung gibt es kein z in [mm] \IR^{3} [/mm] , das diese Bedingung erfüllt.

Bezug
                        
Bezug
Untermannigfaltigkeit beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Mi 15.06.2005
Autor: qwert


Also in  
[mm]\IR^{3} \backslash \vektor{0 \\ 0 \\ z}[/mm]
hat der Gradient eine Nullstelle z.B. [mm] \vektor{ R \\ 0 \\0} [/mm] entscheident ist ,das er auf dem Torus keine Nullstelle hat.

qwert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de