Untermoduln < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 02:31 Di 30.09.2014 | Autor: | Imperio |
Aufgabe | Sei E ein [mm] \IZ-Modul [/mm] und F [mm] \subseteq [/mm] E ein Untermodul. Für eine Primzahl [mm] p\in \IN [/mm] bezeichnen p-Untermoduln von E gerade die Untermoduln des p-primären Teils von E.
Zeigen Sie, dass diese Aussage nicht stets wahr ist:
[mm] \forall\ [/mm] m [mm] \subseteq \IN:(F\cong\IZ//2m\IZ [/mm] => F ist 2-Untermodul) |
Hallo,
ich wäre sehr dankbar, falls mir jemand einen Tipp geben könnte. Ich habe ehrlich zu sagen schon keine Ahnung wie E aussehen soll, damit [mm] F\cong\IZ//2m\IZ [/mm] kein 2-Untermodul wäre. Oder vielleicht hängt es nicht von der Struktur von E, sondern von F ab. Aber ich habe schon ganz viele Varianten probiert und bei mir ist diese Aussage stets wahr.
Viele Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
Mir ist die Terminologie nicht ganz klar. Was ist der p-primäre Teil eines Moduls?
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:42 Di 30.09.2014 | Autor: | hippias |
Hallo Imperio,
Rechne doch bitte einmal eines der Beispiele, die Du bereits untersuchst hast, vor.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 16:44 Di 30.09.2014 | Autor: | Imperio |
Ich habe gerade nochmal überlegt, und ich glaube, ich habe doch ein Beispiel gefunden.
Sei E = [mm] \IZ//6\IZ [/mm] ein [mm] \IZ-Modul, [/mm] dann E(2) = {a [mm] \in [/mm] E | [mm] \exists [/mm] r [mm] \in \IN: 2^r*a [/mm] = 0} = {a [mm] \in [/mm] E | [mm] \exists [/mm] r [mm] \in \IN: 2^r*a \in 6\IZ [/mm] }
=> [mm] \overline{2}a [/mm] = [mm] \overline{6} [/mm] => a = [mm] \overline{3}
[/mm]
=> E(2) = { [mm] \overline{0}, \overline{3} [/mm] }
Untermoduln von E(2) sind dann: { [mm] \overline{0} [/mm] }, { [mm] \overline{0}, \overline{3} [/mm] } = [mm] 3\IZ//6\IZ
[/mm]
Sei jetzt F = [mm] \IZ//2\IZ, [/mm] F ist offensichtlich ein Untermodul von E und isomorph zu [mm] \IZ//2\IZ. [/mm] Aber F ist kein Untermodul von E(2).
Stimmt es so?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Fr 03.10.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:43 Di 30.09.2014 | Autor: | Imperio |
Oh nein, natürlich stimmt das nicht. [mm] \IZ//2\IZ [/mm] ist kein Untermodul von [mm] \IZ//6\IZ.
[/mm]
Aber sei F = [mm] \IZ//6\IZ, [/mm] F ist ein trivialer Untermodul von E und auch isomorph zu [mm] \IZ//2m\IZ, [/mm] wobei m = 3 ist. Dann soll es richtig sein, oder? F ist kein 2-Untermodul von E.
|
|
|
|
|
Hallo,
Ja. Tatsächlich wird jede abelsche Gruppe deren Ordnung von einer Primzahl außer zwei geteilt wird, genügen. Die Feststellung ist ziemlich trivial. Welche Erkenntnis einem durch die Aufgabe kommen soll, ist mir zwar nicht klar. Aber den Gegenbeispiel $ [mm] E=F=\IZ/6 [/mm] $, $ m=3$ passt auf alle Fälle.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:50 Mi 01.10.2014 | Autor: | Imperio |
Vielen Dank, UniversellesObjekt!
|
|
|
|