www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Unterräume
Unterräume < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 So 06.06.2010
Autor: Achilles2084

Aufgabe
Es sei [mm] U:=\{(x_{1},x_{2},.....,x_{n}\} \in \IR^{n} [/mm] : [mm] \summe_{i=1}^{n} x_{i}=0 \subseteq \IR^{n} [/mm]

a) Zeigen Sie, dass U ein linearer Unterraum des  [mm] \IR^{n} [/mm] ist.
b) Bestimmen Sie eine Basis für U. Welche Dimension hat damit U?

Hallo,

stecke an dieser Aufgabe fest und zwar ist mir nicht klar wie ich zeigen soll, dass U ein Unterraum ist. Ich muss ja nachweisen, dass der Nullvektor in da drinnen ist und, dass Addition darin vorkommt.

Lese ich das übrigens richtig, dass wenn ich die Vektoren aufsummiere immer 0 raus kommt?

Danke für die Hilfe

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 So 06.06.2010
Autor: max3000

Ein Unterraum zeichnet sich aus durch

a) Homogenität, d.h. für [mm] $u\in [/mm] U$ muss für beliebiges [mm] \lambda\in\IR [/mm] auch [mm] $\lambda*u\in [/mm] U$ sein. Also das ganze mal in die Definition eingesetzt, da steht dann

[mm] \summe_{i=0}^{n}\lambda*x_i=\lambda*\summe_{i=0}^{n}x_i=\lambda*0=0 [/mm]

b) Linearität, d.h. für [mm] $u,v\in [/mm] U$ muss auch [mm] $u+v\in [/mm] U$ sein. Wieder Definition hernehmen:

[mm] \summe_{i=0}^{n}(u_i+v_i)=\summe_{i=0}^{n}u_i+\summe_{i=0}^{n}v_i=0+0 [/mm]

Dass dann [mm] $0\in [/mm] U$ gilt folgt damit auch automatisch.

Und ja, U beinhaltet alle Vektoren, die als Summe der Komponenten 0 ergeben.



Bezug
                
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 06.06.2010
Autor: Achilles2084

Bedeutet das dann, dass die Basis dieses UV der Nullvektor ist? Dimension 0.

Bezug
                        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 06.06.2010
Autor: schachuzipus

Hallo Dario,

> Bedeutet das dann, dass die Basis dieses UV der Nullvektor
> ist? Dimension 0.  

Dann wäre $U$ der Nullraum [mm] $U=\{(0,0,\ldots,0)\}$ [/mm]

Kommt also nicht hin.

Du hast als definierende Bedingung doch [mm] $\vec{x}=(x_1,x_2,\ldots,x_n)\in [/mm] U$, wenn [mm] $x_1+x_2+\ldots+x_n=0$ [/mm]

Das ist ein LGS mit einer Gleichung in $n$ Unbekannten [mm] $x_i$. [/mm]

Stelle die Gleichung nach [mm] $x_1$ [/mm] um: [mm] $x_1=-x_2-x_3-\ldots-x_n$ [/mm]

Du kannst dir also $n-1$ Variablen [mm] $x_2,x_3,\ldots,x_n$ [/mm] frei wählen.

Damit ergibt sich als Basis und folglich als Dimension von U was?

Gruß

schachuzipus

Bezug
                                
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 06.06.2010
Autor: Achilles2084

Hey Schachuzipus,

dann wäre ja der einzige feste Vektor [mm] x_{1} [/mm] und somit auch die Basis wenn ich die anderen frei wählen kann. Dimension 1.

Richtig?

Bezug
                                        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 06.06.2010
Autor: schachuzipus

Hallo nochmal,

> Hey Schachuzipus,
>  
> dann wäre ja der einzige feste Vektor [mm]x_{1}[/mm] und somit auch
> die Basis wenn ich die anderen frei wählen kann. Dimension
> 1.
>
> Richtig?

Nein, schreib doch mal ne Basis hin!

Jeder Vektor [mm] $\vec{x}=\vektor{x_1\\x_2\\x_3\\\vdots\\x_n}\in [/mm] U$ lässt sich mit dem oben Gesagten doch schreiben als

[mm] $\vec{x}=\vektor{-x_2-x_3-\ldots-x_n\\x_2\\x_3\\\vdots\\x_n}=\vektor{-x_2\\x_2\\0\\0\\\vdots\\0}+\vektor{-x_3\\0\\x_3\\0\\\vdots\\0}+\ldots+\vektor{-x_n\\0\\0\\0\\\vdots\\x_n}$ [/mm] mit [mm] $x_2,x_3,\ldots,x_n\in\IR$ [/mm] beliebig.

Wie schaut's also mit einer Basis aus?

Und dann mit der Dimension?

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de