www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterräume von Vektoren
Unterräume von Vektoren < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume von Vektoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:53 Di 29.01.2008
Autor: Lothare

Hey ihr,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hab mal wieder eine frage -.-, ich hoffe ihr könnt mir nocheinmal helfen.

Also und zwar folgende aufgabe :

Gegeben seien die folgenden beiden Unterräume des [mm] R^3 [/mm] .

[mm] U_1 [/mm] = <(1,2,3), (3,2,1), (-1,2,5)>

[mm] u_2 [/mm] = <(0,4,8), (9,2,-5), (0,12,24)>

Gilt [mm] U_1 [/mm] = [mm] U_2 [/mm] ?

Also, klar ist ja natürlich das [mm] U_1 [/mm] und [mm] U_2 [/mm] aus jeweils 3 Vektoren besteht, aber wie kann ich den nun Zeigen das diese Gleich sind ?

Nur ein Tip wäre hilfreich, rechnen will ich ja dann selber :) aber wäre schön wenn mir jemand nen kleinen Startpunkt zeigen könnte :)

Danke schonmal,
Gruß Lothare

        
Bezug
Unterräume von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Di 29.01.2008
Autor: korbinian

Hallo
  

> Gegeben seien die folgenden beiden Unterräume des [mm]R^3[/mm] .
>  
> [mm]U_1[/mm] = <(1,2,3), (3,2,1), (-1,2,5)>
>  
> [mm]u_2[/mm] = <(0,4,8), (9,2,-5), (0,12,24)>
>  
> Gilt [mm]U_1[/mm] = [mm]U_2[/mm] ?
>  
> Also, klar ist ja natürlich das [mm]U_1[/mm] und [mm]U_2[/mm] aus jeweils 3
> Vektoren besteht, aber wie kann ich den nun Zeigen das
> diese Gleich sind ?


Die beiden Unterräume bestehen aus wesentlich mehr als den 3 Vektoren. Sie bestehen aus allen Linearkombinationen dieser 3 Vektoren.
Ich verstehe die Aufgabe auch nicht so, dass man die Gleichheit zeigen soll. Die Antwort könnte doch auch sein, dass sie nicht gleich sind.
Könnte es sein , dass Du das übersehen hast und kommst Du jetzt alleine klar? Wenn nicht, melde Dich nochmals.
Gruß korbinian

Bezug
                
Bezug
Unterräume von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Di 29.01.2008
Autor: Lothare

Also, ich glaub ich hab es ein bisschen falsch hier hin geschrieben,

Also,

[mm] U_1 [/mm] und [mm] U_2 [/mm] sind ja gegeben.

So nun stellt sich die Frage ob [mm] U_1 [/mm] und [mm] U_2 [/mm] gleich sind.

Die Vektoren die in [mm] U_1 [/mm] und in [mm] U_2 [/mm] stehen, sind denke ich die Basis oder irre ich mich da ?

Meine frage ist aber, wie ich das beweise das sie Gleich sind, bzw wie ich beweise das sie nicht gleich sind.

Das muss ich ja herraus finden.

Ich hoffe du kannst mir nochmal schnell helfen :)

Bezug
                        
Bezug
Unterräume von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Di 29.01.2008
Autor: MathePower

Hallo Lothare,

> Also, ich glaub ich hab es ein bisschen falsch hier hin
> geschrieben,
>  
> Also,
>
> [mm]U_1[/mm] und [mm]U_2[/mm] sind ja gegeben.
>  
> So nun stellt sich die Frage ob [mm]U_1[/mm] und [mm]U_2[/mm] gleich sind.
>  
> Die Vektoren die in [mm]U_1[/mm] und in [mm]U_2[/mm] stehen, sind denke ich
> die Basis oder irre ich mich da ?

Sofern die Vektoren in [mm]U_1[/mm] und [mm]U_2[/mm] linear unabhängig, stellen sie eine Basis dar.

>  
> Meine frage ist aber, wie ich das beweise das sie Gleich
> sind, bzw wie ich beweise das sie nicht gleich sind.
>  
> Das muss ich ja herraus finden.
>  
> Ich hoffe du kannst mir nochmal schnell helfen :)

Zeige, dass sich jeder Vektor aus [mm]U_2[/mm] als Linearkombination der Vektoren aus [mm]U_1[/mm] darstellen läßt.

Gruß
MathePower

Bezug
                                
Bezug
Unterräume von Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Di 29.01.2008
Autor: Lothare

Subber, dank dir Mathepower :)


habs jetzt gelöst :) hm ist gar nicht so schwierig wie ich immer gedacht habe :)

Gruß Lothare

p.s. danke nochmal allen :)

Bezug
                        
Bezug
Unterräume von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Di 29.01.2008
Autor: korbinian

Hallo
wie MathePower schon schreibt, sind die 3 gegebenen Vektoren nur dann eine Basis von U, falls sie linear unabhängig sind.
1. Fall
Sowohl die 3 Vektoren in [mm] U_{1} [/mm] als auch in [mm] U_{2} [/mm] sind linear unabhängig, add sind sie eine Basis. Aber wichtiger: Aus Dimensionsgründen sind sie dann auch eine Basis des [mm] \IR^{3}. [/mm] Dann ist aber [mm] U_{1} [/mm] = [mm] \IR^{3} [/mm] = [mm] U_{2} [/mm]

2. Fall
Die 3 Vektoren in [mm] U_{1} [/mm] sind lin. unabhängig, die 3 Vektoren in [mm] U_{2} [/mm] sind es nicht (oder umgekehrt)., dann ist aus Dimensionsgründen [mm] U_{1} \not= U_{2} [/mm]

3. Fall
Die 3 Vektoren in [mm] U_{1} [/mm] und [mm] U_{2} [/mm] sind lin. abhängig
Jetzt wird´s häßlich - wir müssen rechnen. "Natürlich" liegt dieser Fall vor.
(Folgende Rechnung ohne Gewähr)
dim [mm] U_{1} [/mm] = dim [mm] U_{2} [/mm] = 2
Ein Dimensionsargument hilft also nicht (sofort) weiter.
Offensichtlich sind der 1. und 3. Vektor in [mm] U_{1} [/mm] linear unabhängig.
Jeder kann als Linearkombination der beiden linear unabhängigen Vektoren [mm] \vektor{0 \\4\\8} [/mm] und [mm] \vektor{9 \\2\\-5} [/mm] aus [mm] U_{2} [/mm] geschrieben werden.
Also ist sogar [mm] U_{1} \subset U_{2} [/mm]
Nun ist aus Dimensionsgründen sogar [mm] U_{1} [/mm] = [mm] U_{2} [/mm]
Gruß korbinian



Bezug
        
Bezug
Unterräume von Vektoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 31.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de