www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum
Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:56 Sa 20.10.2007
Autor: Seidom

Aufgabe
Sei [mm] \IK=\IC [/mm] oder [mm] \IK=\IR [/mm] und [mm] n\in\IN\sub [/mm]

Sei [mm] m\in\IN\sub, [/mm] m [mm] \le [/mm] n, und betrachte das kartesische Produkt
      [mm] \IK^m \times \{0\}^{n-m} [/mm] := [mm] \{(u_1,...,u_n)^T\in\IK^n : u_{m+1}=...=u_n=0\}. [/mm]
Zeige, dass [mm] \IK^m \times \{0\}^{n-m} [/mm] ein Unterraum von [mm] \IK^n [/mm] ist.

Hallo an alle :)

Ich muss ja jetzt zeigen, dass die Axiome
(U1) [mm]\forall v,w\in U : \quad v+w\in U [/mm]
(U2) [mm]\forall v\in U\quad \forall\lambda\in\IK\sub : \quad \lambda v\in U [/mm]
gelten. Wenn ich mir jetzt für (U1) zwei Vektoren
[mm] \vektor{v_1 \\ . \\ v_m \\ 0_{m+1} \\ . \\ 0_n } [/mm] und [mm] \vektor{w_1 \\ . \\ w_m \\ 0_{m+1} \\ . \\ 0_n } [/mm] nehme, woher weiß ich dann, dass die Summe dieser beiden wieder Element  des Unterraumes ist? Gleiches Problem bei (U2).
Wahrscheinlich ist es ganz klar, und ich sehe den Wald vor lauter Bäumen nicht. Bin für jede Hilfe dankbar :)

lg Seidom


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Sa 20.10.2007
Autor: angela.h.b.


> Sei [mm]\IK=\IC[/mm] oder [mm]\IK=\IR[/mm] und [mm]n\in\IN\sub[/mm]
>  
> Sei [mm]m\in\IN\sub,[/mm] m [mm]\le[/mm] n, und betrachte das kartesische
> Produkt
>        [mm]\IK^m \times \{0\}^{n-m}[/mm] :=
> [mm]\{(u_1,...,u_n)^T\in\IK^n : u_{m+1}=...=u_n=0\}.[/mm]
>  Zeige,
> dass [mm]\IK^m \times \{0\}^{n-m}[/mm] ein Unterraum von [mm]\IK^n[/mm] ist.
>  Hallo an alle :)
>  
> Ich muss ja jetzt zeigen, dass die Axiome
>  (U1) [mm]\forall v,w\in U : \quad v+w\in U[/mm]
>  (U2) [mm]\forall v\in U\quad \forall\lambda\in\IK\sub : \quad \lambda v\in U[/mm]

Hallo,

[willkommenmr].

Du hast bei dem, was Du für "Unterraum" zeigen mußt, etwas ganz Wichtiges vergessen: [mm] U\not=0. [/mm]

>  
> gelten. Wenn ich mir jetzt für (U1) zwei Vektoren
>  [mm]\vektor{v_1 \\ . \\ v_m \\ 0_{m+1} \\ . \\ 0_n }[/mm] und
> [mm]\vektor{w_1 \\ . \\ w_m \\ 0_{m+1} \\ . \\ 0_n }[/mm] nehme,
> woher weiß ich dann, dass die Summe dieser beiden wieder
> Element  des Unterraumes ist?

Du addierst die beiden nach Vorschrift und stellst fest, daß alle Komponenten ab der (m+1)-ten gleich Null sind.
Also ist die Summe in U.

Für U") entsprechend.

Gruß v. Angela



Bezug
                
Bezug
Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 So 21.10.2007
Autor: Seidom

Also danke erstmal für die schnelle Antwort :)

Bei [mm] U\not=0 [/mm] muss ich erklären, dass das bei uns per Definition ausgeschlossen ist, und deswegen nicht zu prüfen.

>
> Du addierst die beiden nach Vorschrift und stellst fest,
> daß alle Komponenten ab der (m+1)-ten gleich Null sind.
>  Also ist die Summe in U.
>  

Bei diesem Schritt habe ich Probleme; warum ist die Summe in U? Wie ist die Erklärug dafür?



Bezug
                        
Bezug
Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 So 21.10.2007
Autor: angela.h.b.


> Also danke erstmal für die schnelle Antwort :)
>  
> Bei [mm]U\not=0[/mm] muss ich erklären, dass das bei uns per
> Definition ausgeschlossen ist, und deswegen nicht zu
> prüfen.
>  
> >
> > Du addierst die beiden nach Vorschrift und stellst fest,
> > daß alle Komponenten ab der (m+1)-ten gleich Null sind.
>  >  Also ist die Summe in U.
>  >  
> Bei diesem Schritt habe ich Probleme; warum ist die Summe
> in U? Wie ist die Erklärug dafür?
>  
>  

Hallo,

es ist ja die von Dir zu betrachtende Menge U:=$ [mm] \IK^m \times \{0\}^{n-m} [/mm] $ .

Was sind das für Elemente in dieser Menge? Es sind n-Tupel.

Wie sehen die aus: die ersten m Koordinaten sind beliebige Elemente aus K, die letzten n-m Koordinaten sind alle =0.

Du willst nun wissen, ob die Summe zweier Elemente aus U wieder in U liegt.

Dazu nimmst Du Dir zwei beliebige Elemente v,w [mm] \in [/mm] U her,

v:=$ [mm] \vektor{v_1 \\ . \\ v_m \\ 0 \\ . \\ 0 } [/mm] $ und $ w:= [mm] \vektor{w_1 \\ . \\ w_m \\ 0 \\ . \\ 0} [/mm] $, und addierst sie.

Wie addiert sie? Koordinatenweise, also

[mm] v+w=\vektor{v_1+w_1 \\ . \\ v_m+w_m \\ 0+0 \\ . \\ 0+0}=\vektor{v_1+w_1 \\ . \\ v_m+w_m \\ 0 \\ . \\ 0 }. [/mm]

Für  i=1,...m  ist [mm] v_i+w_i \in [/mm] K, also sind die ersten m Koordinaten [mm] \in [/mm] K, die darauffolgenden m-1 Koordinaten sind alle =0, also ist v+w [mm] \in \IK^m \times \{0\}^{n-m}. [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de