www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum beweisen
Unterraum beweisen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Mi 17.02.2010
Autor: peeetaaa

Aufgabe
Ist folgende Menge ein Unterraum von V

[mm] V=\IR^3 [/mm]
U={ [mm] \lambda \vektor{1 \\ 2 \\ 5} [/mm] | [mm] \lambda \in \IR} [/mm]

Hallo zusammen,

kann mir vllt jemand an diesem Beispiel zeigen,
wie ich mit  den 3 Unterraumkritieren beweise, dass das ein oder kein Unterraum ist?
Weiß nämlich gar nicht wie ich hier am besten anfange....
danke

        
Bezug
Unterraum beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Mi 17.02.2010
Autor: Pacapear

Hallo!

>  Hallo
> zusammen,
>  
> kann mir vllt jemand an diesem Beispiel zeigen,
>  wie ich mit  den 3 Unterraumkritieren beweise, dass das
> ein oder kein Unterraum ist?
>  Weiß nämlich gar nicht wie ich hier am besten
> anfange....
>  danke  

Ich versuch's mal :-)

Um zu prüfen, ob die Menge [mm] $U=\{ \lambda \vektor{1 \\ 2 \\ 5} |\lambda \in \IR \}$ [/mm] ein Unterraum ist, musst du 3 Bedingungen überprüfen:

Bedingung 1

Ist der Nullvektor [mm] \vektor{0 \\ 0 \\ 0} [/mm] in der Menge U enthalten?

Ja, ist er, nämlich wenn du [mm] \lambda=0 [/mm] wählst.


Bedingung 2

Für zwei Elemente aus U muss auch die Summe dieser Elemente wieder ein Element aus U sein.

Du nimmst also zwei allgemeine Elemente aus U, z.B. [mm] \lambda_1\vektor{1 \\ 2 \\ 5} [/mm] und [mm] \lambda_2\vektor{1 \\ 2 \\ 5}, [/mm] addierst sie, und guckst, ob das Ergebnis auch ein Element aus U ist.


Bedingung 3

Für ein Element aus U muss auch ein beliebiges Vielfaches dieses Elementes wieder ein Element aus U sein.

Du nimmst also ein allgemeines Element aus U, z.B. [mm] \lambda\vektor{1 \\ 2 \\ 5} [/mm] und ein allgemeines Element aus dem Körper,

über dem dein Vektorraum V definiert ist, z.B. a, multiplizierst den Skalar a mit dem Vektor, und guckst, ob das Ergebnis auch ein Element aus U ist.


Hilft dir das ein bisschen weiter?

LG Nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de