www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Unterringe von Q
Unterringe von Q < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterringe von Q: Korrektur
Status: (Frage) überfällig Status 
Datum: 20:25 Di 20.11.2007
Autor: Kyrill

Aufgabe
Sei p [mm] \in \IN [/mm] prim. Die Menge

[mm] \IZ_{p}:= [/mm] { [mm] \bruch{a}{b}|a,b \in \IN [/mm]  und p teilt nicht b }

bildet einen Unterring von [mm] \IQ [/mm]

1.Bestimmen Sie alle Ideale von [mm] \IZ_{p} [/mm] und zeigen Sie, dass [mm] \IZ_{p} [/mm] ein Hauptidealring ist.

2. Bestimmen Sie ( bis auf Assoziiertheit ) alle Primelemente.

Hallo alle miteinander!
Also ich denke ich habe die Aufgabe gelöst. Da ich aber nicht weiß, ob das so alle seine Richtigkeit hat stelle ich das mal rein und hoffe, dass keiner einen Fehler findet ;)

Zu 1:

[mm] \IZ_{p}:= [/mm] { [mm] \bruch{a}{b}|a,b \in \IN [/mm]  und p teilt nicht b }

Nehme an, dass [mm] \bruch{a}{b} [/mm] vollständig gekürzt ist

[mm] \Rightarrow \IZ_{p}:= [/mm] { [mm] \bruch{a}{b}|a,b \in \IN, v_{p}(a)\ge [/mm] 0 }, wobei [mm] v_{p}(a) [/mm] die Anzahl der p in der Primfaktorzerlegung von a ist.

Bestimmung der Ideale von [mm] \IZ_{p}: [/mm]
- trivialerweise sind {0} und [mm] \IZ_{p} [/mm] Ideale
- [mm] A_{p}:= [/mm] { [mm] \bruch{a}{b}|a,b \in \IZ, v_{p}(a)=r [/mm] }, [mm] r\in \IN [/mm] fest, ist kein Ideal, da z.B. [mm] \bruch{4}{3}\in \IZ_{2}, \bruch{3*2^r}{5}\in A_{2}, [/mm] aber [mm] \bruch{4}{3}*\bruch{3*2^r}{5}\not\in A_{2} [/mm]
- [mm] B_{p}:= [/mm] { [mm] \bruch{a}{b}|a,b \in \IZ, v_{p}(a)>r [/mm] }, r [mm] \in \IN [/mm] fest ist Ideal, da
(i) [mm] 0=\bruch{0}{1}\in B_{p} [/mm]
(ii) Sei [mm] \bruch{a}{b}, \bruch{c}{d} \in B_{p} [/mm]
[mm] \Rightarrow v_{p}(\bruch{a}{b}+\bruch{c}{d}) [/mm] = [mm] v_{p}(\bruch{a}{b})*v_{p}(\bruch{c}{d}) [/mm] = [mm] (v_{p}(a)-v_{p}(b))*(v_{p}(c)-v_{p}(d))>r^2>r, [/mm] da [mm] v_{p}(b) [/mm] und [mm] v_{p}(d)=0 [/mm]
(iii) Sei [mm] \bruch{a}{b}\inB_{p} [/mm]
[mm] \Rightarrow v_{p}(\bruch{-a}{b}) [/mm] = [mm] v_{p}(-a)-v_{p}(b) [/mm] = [mm] v_{p}(-a)=v_{p}(a)>r [/mm]
(iv)Sei [mm] \bruch{a}{b}, \bruch{c}{d} \in B_{p} [/mm]
[mm] \Rightarrow v_{p\(\bruch{a}{b}*\bruch{c}{d}} [/mm] = [mm] v_{p}(\bruch{a}{b}) [/mm] + [mm] v_{p}(\bruch{c}{d}) [/mm] = [mm] v_{p}(a) [/mm] - [mm] v_{p}(b) [/mm] + [mm] v_{p}(c) [/mm] - [mm] v_{p}(d) [/mm] = [mm] v_{p}(a) [/mm] + [mm] v_{p}(c) [/mm] > r+r > r

[mm] \Rightarrow [/mm] Ideale sind [mm] \IZ_{p}, [/mm] {0} und [mm] B_{p} [/mm]

Jetzt noch zu zeigen, dass [mm] \IZ_{p} [/mm] ein Hauptidealring ist:

Für [mm] \bruch{a}{b}=\bruch{c}{d} [/mm] bzw. ac = bd gilt:

[mm] v_{p}(\bruch{a}{b}) [/mm] = [mm] v_{p}(\bruch{c}{d}) [/mm]
[mm] \gdw v_{p}(a)-v_{p}(b) [/mm] = [mm] v_{p}(c)-v_{p}(d) [/mm]
[mm] \gdw v_{p}(a)+v_{p}(c) [/mm] = [mm] v_{p}(d)+v_{p}(b) [/mm]
[mm] \gdw v_{p}(ac) [/mm] = [mm] v_{p}(bd) [/mm]

damit existiert eine normalabbildung
[mm] v_{p}: \IZ_{p} \rightarrow \IN [/mm]
[mm] \bruch{a}{b} \rightarrow v_{p}(a)-v_{p}(b) [/mm]

Behauptung: [mm] \forall \bruch{a}{b}, \bruch{c}{d} \in \IZ_{p}, [/mm] g [mm] \not= [/mm] 0 [mm] \exists [/mm] q,r [mm] \in \IZ_{p} [/mm] mit [mm] \bruch{a}{b} [/mm] = [mm] q*\bruch{c}{d}+r, [/mm] wobei [mm] v_{p}(r)
Beweis: 1. Fall
[mm] v_{p}(\bruch{a}{b})\ge v_{p}(\bruch{c}{d}) [/mm]
[mm] \gdw v_{p}(a)-v_{p}(b) \ge v_{p}(c)-v_{p}(d) [/mm]
[mm] \gdw v_{p}(ad) \ge v_{p}(cb) [/mm]
[mm] \gdw v_{p}(\bruch{ad}{bc}) \ge [/mm] 0

[mm] \Rightarrow \bruch{a}{b} [/mm] = [mm] v_{p}(\bruch{ad}{bc})*v_{p}(\bruch{c}{d}) [/mm] + o

Also kommt p in der PFZ von ad genauso oft vor wie in der von bc, vor dem kürzen
[mm] \Rightarrow \bruch{ad}{cb} \in \IZ_{p} [/mm]

2. Fall: [mm] v_{p}(\bruch{a}{b}) [/mm] < [mm] v_{p}(\bruch{c}{d}) [/mm]
[mm] \Rightarrow \bruch{a}{b} [/mm] = [mm] 0*\bruch{c}{d} [/mm] + [mm] \bruch{a}{b} [/mm]

[mm] \Rightarrow \IZ_{p} [/mm] euklidischer Ring [mm] \Rightarrow \IZ_{p} [/mm] Hauptidealring

Jetzt zum 2. der Aufgabe:
Da [mm] \IZ_{p} [/mm] Hauptidealring ist [mm] \IZ_{p} [/mm] auch faktoriell
Es gilt: Element prim [mm] \gdw [/mm] Element irrduzibel
Suche also Elemente, die keine Zerlegung in Nichteinheiten haben:

1. Fall:
[mm] v_{p}(\bruch{a}{b})>1 [/mm]
[mm] \bruch{a}{b} [/mm] = [mm] \bruch{p}{1}*\bruch{a}{bp} [/mm]
[mm] \bruch{p}{1} \in \IZ_{p} [/mm] ist Nichteinheit, da [mm] \bruch{1}{p}\not\in \IZ_{p}, [/mm] da [mm] v_{p}(\bruch{1}{p}) [/mm] = -1

[mm] \bruch{a}{pb} [/mm] = [mm] v_{p}(p) [/mm] + [mm] v_{p}(b)-v_{p}(a) [/mm] = [mm] 1-(v_{p}(a)-v_{p}(b)), [/mm] da [mm] (v_{p}(a)-v_{p}(b))>1 [/mm] folgt [mm] \bruch{a}{pb}\le [/mm] -1
[mm] \Rightarrow [/mm] hat Zerlegung in Nichteinheiten
[mm] \Rightarrow [/mm] kein Primelement

2. Fall [mm] v_{p}(\bruch{a}{b}) [/mm] = 1
Sei [mm] \bruch{a}{b} [/mm] = [mm] \bruch{u}{v}*\bruch{x}{y} [/mm]
Da 1 = [mm] v_{p}(\bruch{a}{b}) [/mm] = [mm] v_{p}(\bruch{u}{v}*\bruch{x}{y}) [/mm] = [mm] v_{p}(\bruch{u}{v})*v_{p}(\bruch{x}{y}) [/mm]

[mm] \Rightarrow [/mm] da [mm] v_{p}>0 v_{p}(\bruch{u}{v})=0 [/mm] oder [mm] v_{p}(\bruch{x}{y})=0 [/mm]

[mm] \Rightarrow \bruch{u}{v} [/mm] Einheit oder [mm] \bruch{x}{y} [/mm] ist Einheit
[mm] \Rightarrow [/mm] hat keine Zerlegung in Nichteinheiten
[mm] \Rightarrow [/mm] Primelement

3. Fall: [mm] v_{p}(\bruch{a}{b}) [/mm] = 0
[mm] \Rightarrow \bruch{a}{b} [/mm] ist Einheit [mm] \Rightarrow \bruch{a}{b} [/mm] ist nicht prim

[mm] \Rightarrow [/mm] Menge der Primelemente = { [mm] \bruch{a}{b}| [/mm] a,b [mm] \in \IZ, v_{p}(a) [/mm] = [mm] v_{p}(b)+1} [/mm]

So das war jetzt echt mal viel. Ich hoffe ich habe nichts vergessen.
Schonmal vielen Danke im Voraus!

        
Bezug
Unterringe von Q: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Do 22.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de