Unterschied Korrelationsmatrix < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:32 Fr 04.09.2015 | Autor: | laupl |
Hallo,
ich habe ein praktisches Problem, das ich mal versuche mathematisch zu beschreiben. Vielleicht kann ich es dann mit eurer Hilfe lösen. Wenn etwas unklar ist, einfach fragen.
Gegeben sind die Zufallsvektoren [mm] $\boldsymbol{X} \in \IC^N$, $\boldsymbol{Y} \in \IC^N$ [/mm] und [mm] $\boldsymbol{Z} \in \IC^N$.
[/mm]
Außerdem die zugehörenden Mittelwertvektoren [mm] $E(\boldsymbol{X})=[x_1\quad \hdots \quad x_N]^T$ [/mm] mit [mm] $x_i=E(X_i)$, $E(\boldsymbol{Y})=[y_1\quad \hdots \quad y_N]^T$ [/mm] mit [mm] $y_i=E(Y_i)$ [/mm] und [mm] $E(\boldsymbol{Z})=[z_1\quad \hdots \quad z_N]^T$ [/mm] mit [mm] $z_i=E(X_i+Y_i)$. $E(\cdot)$ [/mm] ist der Erwartungswert, [mm] $T\vspace{}$ [/mm] bedeutet transponiert.
Nun geht es um die Autokorrelationsmatrizen [mm] $\boldsymbol{R}_X=E(\boldsymbol{XX}^H)$, $\boldsymbol{R}_Y=E(\boldsymbol{YY}^H)& [/mm] und [mm] $\boldsymbol{R}_Z=E(\boldsymbol{ZZ}^H)$. $H\vspace{}$ [/mm] bedeutet hermitesch, also komplex konjuguiert und transponiert.
Meine Frage lautet nun, wie unterscheiden sich die beiden Matrizen [mm] $\boldsymbol{R}_X$ [/mm] und [mm] $\boldsymbol{R}_Y$ [/mm] von der Matrix [mm] $\boldsymbol{R}_Z$ [/mm] mathematisch? Lässt sich dazu eine allgemeine Aussage treffen?
Danke, Grüße
|
|
|
|
Hiho,
es gilt doch: [mm] $ZZ^H [/mm] = [mm] (X+Y)(X+Y)^H [/mm] = [mm] (X+Y)(X^H [/mm] + [mm] Y^H) [/mm] = [mm] XX^H [/mm] + [mm] YY^H [/mm] + [mm] XY^H [/mm] + [mm] YX^H [/mm] = [mm] XX^H [/mm] + [mm] YY^H [/mm] + [mm] XY^H [/mm] + [mm] (XY^H)^H$
[/mm]
Desweiteren ist für eine Matrix A der Erwartungswert komponentenweise definiert, so dass [mm] $E[A^H] [/mm] = [mm] \left(E[A]\right)^H$ [/mm] gilt, d.h. es gilt insgesamt:
[mm] $R_Z [/mm] = [mm] R_X [/mm] + [mm] R_Y [/mm] + K$, wobei K eine hermitische Matrix ist.
Konkret gilt $K = [mm] E[XY^H] [/mm] + [mm] \left(E[XY^H]\right)^H$
[/mm]
Ob dir das nun weiterhilft, weiß ich nicht
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 12:10 Mo 07.09.2015 | Autor: | laupl |
Hi,
danke für die Antwort!
Lässt sich allgemein etwas über die Definitheit von [mm] $\boldsymbol{R}_X$, $\boldsymbol{R}_Y$ [/mm] und [mm] $\boldsymbol{R}_Z$ [/mm] aussagen?
Kann es sein, dass [mm] $\boldsymbol{R}_X$ [/mm] und [mm] $\boldsymbol{R}_Y$ [/mm] immer positiv definit sind und [mm] $\boldsymbol{R}_Z$ [/mm] immer positiv semidefinit? Falls ja, wie kann man das zeigen?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 05:33 Mi 16.09.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|