www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Untersuchen von Polynomfkt.
Untersuchen von Polynomfkt. < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchen von Polynomfkt.: Aufsuchen von Polynmfkt.
Status: (Frage) beantwortet Status 
Datum: 16:28 Mo 04.01.2010
Autor: diamOnd24

Aufgabe 1
1.) Der Graph einer Polynomfunktion 3ten Grades berührt im Urpsrung die 1. AChse. Die Tangente im Punkt P = (1/1) hat die Steigung - 24. Ermittle eine Temdarstellung der Funktion f.


Aufgabe 2
2. ) Der Graph einer Polynomfunktion f vom Grad 3 hat eine lokale Extremstelle bei x=4. Die Steigung der Tangente an den Graphen von f an der Stelle x= -3 beträgt 21, im Punkt P = ( -2/8) ist die Tangente parallel zur 1. Achse. Ermittle eine Termdarstellung der funktion f.

Hallo.
Also ich habe bei beiden aufgaben nur 3 bedingungen von 4 gefunden. und zwar folgende.

1.) I f(0)= 0 -> wegen Urpsrung
    II f(1)=1 -> Wegen P(1/1)
   III f'(1) = -24 -> wegene der Steigung im Punkt (1/1)

ich glaube ich sitze einfach auf der leitung aber wie geht die 4 bedingung ?

2. ) I f'(4) = 0 -> wegen der Extremstelle x=4
     II f'(-3) = 21 -> wegen der Steigung an der Stele x= -3
    III f(-2) = 8 -> wegen dem Punkt (-2/8)

auch hier komm ich nich drauf. ich glaube es hat was mit dem parallel verhalten zu tun. aber ich kenn mich da nicht 1000 % aus.

könnt ihr mir helfen nur die 4. bedingung, sonst brauch ich nichts ^!!!

danke lg. maria

        
Bezug
Untersuchen von Polynomfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Mo 04.01.2010
Autor: fred97


> 1.) Der Graph einer Polynomfunktion 3ten Grades berührt im
> Urpsrung die 1. AChse. Die Tangente im Punkt P = (1/1) hat
> die Steigung - 24. Ermittle eine Temdarstellung der
> Funktion f.
>  
>
> 2. ) Der Graph einer Polynomfunktion f vom Grad 3 hat eine
> lokale Extremstelle bei x=4. Die Steigung der Tangente an
> den Graphen von f an der Stelle x= -3 beträgt 21, im Punkt
> P = ( -2/8) ist die Tangente parallel zur 1. Achse.
> Ermittle eine Termdarstellung der funktion f.
>  Hallo.
>  Also ich habe bei beiden aufgaben nur 3 bedingungen von 4
> gefunden. und zwar folgende.
>  
> 1.) I f(0)= 0 -> wegen Urpsrung


und f'(0) = 0 wegen Berühren


>      II f(1)=1 -> Wegen P(1/1)

>     III f'(1) = -24 -> wegene der Steigung im Punkt (1/1)

>  
> ich glaube ich sitze einfach auf der leitung aber wie geht
> die 4 bedingung ?
>  
> 2. ) I f'(4) = 0 -> wegen der Extremstelle x=4
>       II f'(-3) = 21 -> wegen der Steigung an der Stele x=

> -3
>      III f(-2) = 8 -> wegen dem Punkt (-2/8)

>  
> auch hier komm ich nich drauf. ich glaube es hat was mit
> dem parallel verhalten zu tun.




Genau: f'(-2) = 0

FRED


> aber ich kenn mich da nicht
> 1000 % aus.
>  
> könnt ihr mir helfen nur die 4. bedingung, sonst brauch
> ich nichts ^!!!
>  
> danke lg. maria


Bezug
                
Bezug
Untersuchen von Polynomfkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Mo 04.01.2010
Autor: diamOnd24

ViELEN dank für die schnelle antwort ;)
die anderen bedingungen sind richtig oder ?

Bezug
                        
Bezug
Untersuchen von Polynomfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mo 04.01.2010
Autor: MathePower

Hallo diamOnd24,

> ViELEN dank für die schnelle antwort ;)
>  die anderen bedingungen sind richtig oder ?


Soweit Du sie aufgeschrieben hast, ja.

Bei der Aufgabe 2.) fehlt noch eine Bedingung.

Da die Tangente in (-2/8) parallel zur 1. Achse ist, gilt:

[mm]f'\left(-2\right)=0[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Untersuchen von Polynomfkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Mo 04.01.2010
Autor: diamOnd24

ok vielen dank. ja ich weiß ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de