Untersuchung auf Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:00 Mi 28.09.2011 | Autor: | Hastur |
Aufgabe | [mm] f(x,y)=\begin{cases} \bruch{x+y^{3}}{x+ \wurzel{x^{2}+y^{2}}^{3}}, & \mbox{für } (x,y) \not= (0,0) \\ 0, & \mbox{sonst} \end{cases}
[/mm]
Ist f stetig im Punkt (0,0)? |
Hallo,
ich bin immer noch etwas unsicher bezüglich Stetigkeit und da bald eine Klausur bevor steht, möchte ich diesen Umstand korrigieren. Die Aufgabe entstammt einer alten Klausur, die wir als Vorbereitungsmöglichkeit erhalten haben, allerdings ohne Lösungen.
Mein Ansatz wäre nun, das Folgekriterium zu verwenden. In diesem Fall mit Hilfe der Folge [mm] \underline{x}_{k} [/mm] = (0, [mm] \bruch{1}{k} [/mm] ) bzw. [mm] \underline{x}_{k} [/mm] = (0, - [mm] \bruch{1}{k} [/mm] ). Wenn ich den linksseitigen Grenzwert an der Stelle (0,0) berechne, ist er negativ (-1?) und rechtsseitig positiv (+1?) - also kann f an der Stelle nicht stetig sein.
Soweit mein Gedankengang. Zunächst: Ist das richtig? Und wie schreibe ich das formal wasserdicht auf?
Schonmal vielen Dank im Voraus für eure Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:02 Mi 28.09.2011 | Autor: | Helbig |
Hallo Hastur,
der Ansatz ist richtig! Aber man spricht nicht von einseitigen Grenzwerten bei Folgen in [mm] $\IR^2$. [/mm] Klarer wird es, die Folgen unterschiedlich zu benennen, etwa [mm] $a_k=\left(0,\bruch 1 k\right)$ [/mm] und [mm] $b_k=\left(0,-\bruch 1 k\right)$.
[/mm]
Es fehlen die vier Konvergenznachweise für [mm] $a_k\to [/mm] (0,0)$ und [mm] $b_k\to [/mm] (0,0)$, sowie für [mm] $f(a_k)\to [/mm] (0,1)$ und [mm] $f(b_k)\to [/mm] (0,-1).$
Viel Erfolg,
Wolfgang
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:06 Mi 28.09.2011 | Autor: | fred97 |
> Hallo Hastur,
> der Ansatz ist richtig! Aber man spricht nicht von
> einseitigen Grenzwerten bei Folgen in [mm]\IR^2[/mm]. Klarer wird
> es, die Folgen unterschiedlich zu benennen, etwa
> [mm]a_k=\left(0,\bruch 1 k\right)[/mm] und [mm]b_k=\left(0,-\bruch 1 k\right)[/mm].
>
> Es fehlen die vier Konvergenznachweise für [mm]a_k\to (0,0)[/mm]
> und [mm]b_k\to (0,0)[/mm],
> sowie für [mm]f(a_k)\to (0,1)[/mm] und [mm]f(b_k)\to (0,-1).[/mm]
Du meinst sicher:
[mm]f(a_k)\to 1[/mm] und [mm]f(b_k)\to -1.[/mm]
FRED
>
> Viel Erfolg,
> Wolfgang
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:40 Do 29.09.2011 | Autor: | Hastur |
Hallo,
da f vom [mm] \IR^{2} \to \IR [/mm] abbildet, halte ich mich mal an Freds Korrektur.
Vielen Dank nochmal, das hat mir wirklich weiter geholfen!
|
|
|
|