www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Untersuchung einer Funktion
Untersuchung einer Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Di 25.10.2011
Autor: Fee

Aufgabe
Nenne die Definitions-und Wertemenge, berechne den Grenzwert( x strebt gegen Unendlich und minus Unendlich ) . Wie ist die Monotonie des Graphen ?
Schreibe deine Vermutung bezüglich des Verhalten des Graphen an den nicht definierten Stellen auf.

a) f(x)=x/(X² - 4)

Hallo Leute ! ;)

Mein Mathelehrer hat uns die Aufgabe diktiert. Was ist nochmal die Wertemenge,wie lautet sie dann hier??? Und bei den Grenzwerten geht bei mir nichts mehr... Was ist der Unterschied zwischen +Unendlich und -Unendlich ?

Bei der Untersuchung der nicht definierten Stellen wieß ich , das man zuerst die Urbildfolge und dann die Bildfolge bilden muss. Aber was kommt dann???

Könnt Ihr mir helfen ?

Eure Fee



        
Bezug
Untersuchung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 25.10.2011
Autor: schachuzipus

Hallo Fee,


> Nenne die Definitions-und Wertemenge, berechne den
> Grenzwert( x strebt gegen Unendlich und minus Unendlich ) .
> Wie ist die Monotonie des Graphen ?
>  Schreibe deine Vermutung bezüglich des Verhalten des
> Graphen an den nicht definierten Stellen auf.
>  
> a) f(x)=x/(X² - 4)
>  Hallo Leute ! ;)
>  
> Mein Mathelehrer hat uns die Aufgabe diktiert. Was ist
> nochmal die Wertemenge,wie lautet sie dann hier??? Und bei
> den Grenzwerten geht bei mir nichts mehr... Was ist der
> Unterschied zwischen +Unendlich und -Unendlich ?
>  
> Bei der Untersuchung der nicht definierten Stellen wieß
> ich , das man zuerst die Urbildfolge und dann die Bildfolge
> bilden muss. Aber was kommt dann???
>  
> Könnt Ihr mir helfen ?

Das ist sehr wirr, du solltest deine Gedanken mal sortieren und deine Frage(n) strukuriert aufschreiben ...

Fangen wir mal an:

Definitionsmenge: Das sind alle reellen Zahlen, für die der Ausdruck [mm]f(x)=\frac{x}{x^2-4}[/mm] definiert ist.

Was ist bei Brüchen nicht erlaubt? Klar, durch 0 teilen, du musst also untersuchen, für welche [mm]x\in\IR[/mm] der Nenner 0 wird und diese x herausnehmen.

Das sind die sog. Polstellen.

Für den Wertebereich untersuche das Verhalten von [mm]f(x)[/mm] für [mm]x\to \text{Polstelle}[/mm]

Für die Monotonie schaue mal in deine Unterlagen, wie Monotonie und 1.Ableitung zusammenhängen.

Für die Grenzwerte von [mm]f(x)[/mm] für [mm]x\to\pm\infty[/mm] beachte, dass der Nennergrad (2 von [mm]x^2[/mm]) höher als der Zählergrad (1 von [mm]x=x^1[/mm]) ist.

Wenn dir das nichts sagt, klammere im Nenner mal [mm]x[/mm] aus und kürze es gegen das x aus dem Zähler weg und schaue dann, was für [mm]x\to\pm\inifty[/mm] passiert.


>  
> Eure Fee
>  
>  

Gruß

schachuzipus


Bezug
                
Bezug
Untersuchung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 25.10.2011
Autor: Fee

Danke, dass du mir hilfst !!!

Es hat geklappt !

Hast du auch eine Idee , wie man das mit der Untersuchung des Verhaltens des Graphen an den nicht definierten Stellen anstellt ?

Bezug
                        
Bezug
Untersuchung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Di 25.10.2011
Autor: schachuzipus

Hallo nochmal,




> Danke, dass du mir hilfst !!!
>  
> Es hat geklappt !
>  
> Hast du auch eine Idee , wie man das mit der Untersuchung
> des Verhaltens des Graphen an den nicht definierten Stellen
> anstellt ?

Ja, habe ich, aber sage du erstmal, welche Stellen das denn sind ...

Gruß

schachuzipus


Bezug
                                
Bezug
Untersuchung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Di 25.10.2011
Autor: Fee

, ich würde sagenen, dass das 2 und -2 sind.

Bezug
                        
Bezug
Untersuchung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Di 25.10.2011
Autor: Steffi21

Hallo, die Stellen [mm] x_1=-2 [/mm] und [mm] x_2=2 [/mm] hast du ja nun erkannt, untersuche nun die Grenzwerte für x gegen -2 bzw. 2 von links bzw. rechts, wenn du die Grenzwerte nicht sofort erkennst, so setze für den Grenzwert x gegen -2 von links doch mal die Zahlen -3; -2,5; -2,1; -2,01; -2,001 ein, analog die anderen Grenzwerte

Steffi

Bezug
                                
Bezug
Untersuchung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Di 25.10.2011
Autor: Fee

Ws bringt mir das ? (Danke, dass du mir hilfst )

Bezug
                                        
Bezug
Untersuchung einer Funktion: Wertebereich
Status: (Antwort) fertig Status 
Datum: 18:15 Di 25.10.2011
Autor: Infinit

Hallo fee,
damit bekommst Du eine Aussage über den Wertebereich in der Nähe dieser Polstellen, also der Nullstellen des Nenners.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de