www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Untervektorräume
Untervektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Di 02.05.2006
Autor: jogi

Sei V ein Vektorraum über einem Körper K
Beweisen Sie:
a) Sind U1, U2 Untervektorräume von V, so ist auch [mm] U1\capU2 [/mm] ein Untervektorraum von V.
b)Ist U eine Menge von Untervektorräumen von V, so ist auch  [mm] \bigcap_{i=1}^{n}U [/mm] ein Untervektorraum von V.


ist es ausreichend wenn ich zeige das die elemente der schnittmenge linear unabhängig sind und der nullvektor enthalten ist. und dann árgumentiere das die schnittmenge von u1 und u2 sowohle element u1 als auch u2 und sowohl u1 als auch u2 element v ist ?
und bei aufgabenstellung b eigentlich fast das gleiche? oder bin ich völlig uaf dem falschen weg.

        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Di 02.05.2006
Autor: dormant

Hallo!

> ist es ausreichend wenn ich zeige das die elemente der
> schnittmenge linear unabhängig sind und der nullvektor
> enthalten ist. und dann árgumentiere das die schnittmenge
> von u1 und u2 sowohle element u1 als auch u2 und sowohl u1
> als auch u2 element v ist ?

Die Elemente der Schnittmenge sind nicht alle linear unabhängig, aber es ist schon richtig, dass der Nullvektor drin sein muss.

Die Standartvorgehensweise, wenn man zeigen will, dass U ein UVR von V ist, ist zu zeigen, dass:

1) [mm] 0\in [/mm] U,
1) Falls [mm] u_{1}, u_{2}\in [/mm] U [mm] \Rightarrow u_{1}+u_{2}\in [/mm] U,
2) Falls [mm] u_{1}\in [/mm] U und [mm] \lambda\in\IK \Rightarrow \lambda*u_{1}\in [/mm] U.

Mehr nicht. Und ja, es stimmt, dass b) die Verallgemeinerung von a) ist.

Gruß,
dormant

Bezug
                
Bezug
Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Di 02.05.2006
Autor: jogi

also ich bin das wie folgt angegangen und hoffe es ist überwiegend richtig:

zu zeigen ist:
1) 0  [mm] \in [/mm] U1  [mm] \cap [/mm] U2
2) [mm] \forall [/mm] x,y [mm] \in [/mm] U1 [mm] \cap [/mm] U2    [mm] (x+y\inU1 \cap [/mm] U2)
3) [mm] \forall [/mm] x [mm] \in [/mm] U1 [mm] \cap [/mm] U2  [mm] \wedge \forall [/mm] a [mm] \in [/mm] K x*a [mm] \in [/mm]  U1 [mm] \cap [/mm] U2    


zeige 1)

seien U1 und U2 UV von V, dann ist nach Def. von UV [mm] 0\in [/mm] U1 [mm] \wedge 0\in [/mm] U2  [mm] \Rightarrow [/mm] 0 [mm] \in [/mm] U1 [mm] \cap [/mm] U2  


zeige 2)

sei x [mm] \in [/mm] U1 [mm] \wedge [/mm] U2 und y [mm] \in [/mm] U1 [mm] \wedge [/mm] U2
[mm] \Rightarrow [/mm] (x+y [mm] \in [/mm] U1) [mm] \wedge [/mm] (x+y [mm] \in [/mm] U2)
[mm] \Rightarrow [/mm] x+y [mm] \in [/mm] U1 [mm] \cap [/mm] U2 , da U1 [mm] \cap [/mm] U2  [mm] \subseteq [/mm] U1
und U1 [mm] \cap [/mm] U2  [mm] \subseteq [/mm] U2


zeige 3)

seien U1 [mm] \wedge [/mm] U2 UV von V über K, dann gilt nach Def. von UV für x [mm] \in [/mm] U1 und a [mm] \in [/mm] K a*x [mm] \in [/mm] U1, sei x [mm] \in [/mm] U1 [mm] \wedge [/mm] U2 und a [mm] \in [/mm] K
[mm] \Rightarrow [/mm] x*a [mm] \in [/mm] U1 [mm] \wedge [/mm] x*a [mm] \in [/mm] U2 [mm] \Rightarrow [/mm] x*a [mm] \in [/mm] U1  [mm] \cap [/mm] U2



ist das ok so?






Bezug
                        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Di 02.05.2006
Autor: dormant

Hi!

> also ich bin das wie folgt angegangen und hoffe es ist
> überwiegend richtig:
>  
> zu zeigen ist:
>  1) 0  [mm]\in[/mm] U1  [mm]\cap[/mm] U2
>  2) [mm]\forall[/mm] x,y [mm]\in[/mm] U1 [mm]\cap[/mm] U2    [mm](x+y\inU1 \cap[/mm] U2)
>  3) [mm]\forall[/mm] x [mm]\in[/mm] U1 [mm]\cap[/mm] U2  [mm]\wedge \forall[/mm] a [mm]\in[/mm] K x*a
> [mm]\in[/mm]  U1 [mm]\cap[/mm] U2    

Ja.

> zeige 1)
>  
> seien U1 und U2 UV von V, dann ist nach Def. von UV [mm]0\in[/mm] U1
> [mm]\wedge 0\in[/mm] U2  [mm]\Rightarrow[/mm] 0 [mm]\in[/mm] U1 [mm]\cap[/mm] U2  

Ja, genau.

> zeige 2)
>  
> sei x [mm]\in[/mm] U1 [mm]\wedge[/mm] U2 und y [mm]\in[/mm] U1 [mm]\wedge[/mm] U2
>  [mm]\Rightarrow[/mm] (x+y [mm]\in[/mm] U1) [mm]\wedge[/mm] (x+y [mm]\in[/mm] U2)
>  [mm]\Rightarrow[/mm] x+y [mm]\in[/mm] U1 [mm]\cap[/mm] U2 , da U1 [mm]\cap[/mm] U2  [mm]\subseteq[/mm]
> U1
> und U1 [mm]\cap[/mm] U2  [mm]\subseteq[/mm] U2

Das stimmt schon, man kanns aber übersichtlicher hinschreiben, finde ich.

> zeige 3)
>  
> seien U1 [mm]\wedge[/mm] U2 UV von V über K, dann gilt nach Def. von
> UV für x [mm]\in[/mm] U1 und a [mm]\in[/mm] K a*x [mm]\in[/mm] U1, sei x [mm]\in[/mm] U1 [mm]\wedge[/mm]
> U2 und a [mm]\in[/mm] K
>  [mm]\Rightarrow[/mm] x*a [mm]\in[/mm] U1 [mm]\wedge[/mm] x*a [mm]\in[/mm] U2 [mm]\Rightarrow[/mm] x*a
> [mm]\in[/mm] U1  [mm]\cap[/mm] U2

  
Ja, genau. Wie bei 2 - die Schreibweise mit logischen Operatoren ist ein bisschen unübersichtlich für so ein einfaches Problem. Aber stimmt alles.

Gruß,
dormant

Bezug
                                
Bezug
Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Di 02.05.2006
Autor: jogi

dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de