www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Untervektorräume
Untervektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Frage, dringend
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 07.02.2005
Autor: Flugzwerg

Hallo!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe  ein Problem mit den Untervektorräumen.

Mir sind die Untervektorraum Axiome bekannt und klar. Dennoch weiß ich einfach nicht wie ich  Teilmengen darauf überprüfen soll ob es Untervektorräume sind oder nicht.

Wenn ich jetzt z.B die aufgabe habe: U2 := { ( x1, x2, x3( Element aus R3

x1 +x2 -4x3 = 0}

Also schau ich erst mal ob was drin ist. Da x1+x2...=0 ist was drin oder?
Also ist das Kriterium erfüllt.

Dann müssen u und u' Elemente von U sein.
Da es hier ja die Reellen Zahlen sind ist u und u' wohl auch enthalten.

Dann kommt noch die abgeschlossenheit bezüglich der Skalaren multiplikation.
Die ist hier auch gegeben.

War das jetzt richtig? Oder habe ich einen Denkfehler...

2.

Wenn ich jetzt z.B  x1 ungleich x2  habe im R3 auch.  Was mach ich denn dann? Ist es egal ob die Gleichung oder was immer da steht mir als logisch erscheint?

Das gleiche Problem habe ich auch bei   x1+x2>= x3

Was ist denn wenn  x1 =-5 und x2= 1 und x3 = 2 ?

Ich habe da offensichtlich etwas noch nicht verstanden...

kann mir jemand vielleicht an meinen Beispielen noch mal erklären wie es geht ( bei den letzten beiden?) und beim ersten vielleicht sagen was korrekt und was falsch ist, und warum?


Es ist auch ein bisschen dringend weil ich am Samstag meine Mathe 1 Klausur schreibe... sry

Vielen Dank für Eure hilfe!!!

        
Bezug
Untervektorräume: Naja, gut...
Status: (Antwort) fertig Status 
Datum: 17:09 Mo 07.02.2005
Autor: laucky

Es gibt zwei möglcihe Antworten:

1, Der Raum ist Lösungsmenge eines homogenen Gleichungssystems, weiterhin nichtleer => Unterraum des R3

2. Zu prüfen:

a. Nichtleer (bereits gelöst)

b. Abgeschlossenheit bzgl. Addition, also

x [mm] \not= [/mm] y aus U => x+y aus U

prüfe: (x1+y1)+(x2+y2)-4(x3+y3)=x1+x2-4x3 + y1+y2-4y3 = 0 + 0 = 0

also abgeschlossen bzgl. Addition

c. Abgeschlossenheit bzgl. Skalarmultiplikation, also

c [mm] \not= [/mm] 0 aus R, x aus U => c*x aus U

prüfe: (c*x1)+(c*x2)-4(c*x3)=c*(x1+x2-4x3)=c * 0=0 ok

fertig.

Grüße

Bezug
                
Bezug
Untervektorräume: Bestätigung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Mo 07.02.2005
Autor: Zwerglein

Hi, laucky,

ich finde, Du hast das gut erläutert!

Vielleicht sollte man dem nik noch folgende Info rüberwachsen lassen:
Unterräume des [mm] \IR^{3} [/mm] sind alle Ebenen und Geraden, die das Nullelement enthalten (die also durch 0 gehen!). In unserem Fall liegt eine Ebene durch den Nullpunkt vor.

mfG!
Zwerglein

Bezug
                        
Bezug
Untervektorräume: Okay, Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Mo 07.02.2005
Autor: laucky

Hallo!

Dann kann ich ja eigentlich in meiner obigen Lösung einfach beim Test auf SM-Abgeschlossenheit c=0 zulassen. Dann klärt sich das wie von selbst. Aber stimmt schon, für lineare UR muss Null IMMER enthalten sein, sonst hätten wir einen affinen UR vorliegen.

Beispiel: A affiner Unterraum, v aus A => U:= A - v = [mm] \{x | x=w-v, w aus A\} [/mm] linearer Unterraum

Danke, mann, ich lern grad für die Zwischenprüfung in LA ;)

Bezug
                                
Bezug
Untervektorräume: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Di 08.02.2005
Autor: Flugzwerg


Danke für Eure schnelle hilfe !

Nachdem ich mich jetzt noch mal ausgiebig mit Deinen Anmerkungen auseinandergesetzt habe, komme ich auch mit anderen UV`s klar!!!

:-)

Hoffe es klappt auch am Samstag !!! *zitter*

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de