www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorräume
Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Beweis Untervektorräume
Status: (Frage) beantwortet Status 
Datum: 13:35 So 23.11.2008
Autor: mathefragen0815

Aufgabe
Seien U, V,W Untervektorräume eines gegebenen Vektorraums. Gilt dann stets folgende Aussage?

[mm] U\cap(V [/mm] +W) = (U [mm] \cap [/mm] V ) + [mm] (U\capW) [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt!

Hallo ich habe Probleme bei der der oben stehenden Aufgaben. Mein Ansatz ist, die Aussage über die Eigenschaften von Untervektorräumen zu beweisen. Nach mehreren Studen kann ich nun aber mit Gewißheit sagen, dass ich das niemals allein hinbekommen werde! Ich verstehe nicht wie mir edie EIgenschaften helfen sollen! Bitte helft mir mit möglichst ausführlichen Erklärungen und Ansätzen, da ich nix aber wirlich nix mehr begreife!!

Vielen Dank!

        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 So 23.11.2008
Autor: leduart

Hallo
So wie es da steht ist es sicher falsch, rechts kommt ja W gar nicht mehr vor!
Man kann auch immer ueberlegen, obs nicht ein Gegenbeispiel gibt!
Wass wenn die 3 Unterraeume nur den 0 vektor gemeinsam haben?
Gruss leduart

Bezug
        
Bezug
Untervektorräume: richtige Angabe
Status: (Frage) beantwortet Status 
Datum: 13:09 Mo 24.11.2008
Autor: mathefragen0815

Aufgabe
Seien U, V,W Untervektorr¨aume eines gegebenen Vektorraums. Gilt dann stets folgende Aussa-
ge?
U [mm] \cap [/mm] (V +W) = (U [mm] \cap [/mm] V ) + (U [mm] \cap [/mm] W)

so jetzt passt die Aufgabenstellung! Kann mir bitte jemand helfen?

Stichworte bringen mich nur bedingt weiter! Bitte eine kleine "Bauanleitung"!!! : )

Bezug
                
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Mo 24.11.2008
Autor: fred97

Die Aussage ist im allgemeinen falsch !

Der zu Grunde liegende Vektorraum sei [mm] \IR^2. [/mm]

Es sei U die lineare Hülle von [mm] \vektor{1 \\ 1}, [/mm]

V die lineare Hülle von [mm] \vektor{1 \\ 0} [/mm]  und W die lineare Hülle von [mm] \vektor{0 \\ 1} [/mm]


Dann ist U $ [mm] \cap [/mm] $ (V +W) = U und (U $ [mm] \cap [/mm] $ V ) + (U $ [mm] \cap [/mm] $ W) = {0}

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de