www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraum
Untervektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum: Rückfrage/ Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:24 So 27.11.2011
Autor: Zelda

Aufgabe
Untersuchen Sie in jedem der folgenden drei Fälle, ob die Menge aller
[mm]\pmat{a\\ b} \in \IR^{2}[/mm]

mit der angegebenen Eigenschaft ein Untervektorraum des [mm]\IR^{2}[/mm] ist:
a.) ab=0



Aus der Eigenschaft ab=0 folgt, dass entweder a oder b gleich 0 sein muss. Ein UVR muss abgeschlossen bzgl. der Addition sein.
Also angenommen a=0 dann 0+b= b und das ganze analog zu angenommen b=0... damit liegt a+b in der Menge U.

Mein Kopfproblem liegt jetzt bei den Bedingungen der Skalarmultiplikation. Für [mm]\lambda a [/mm] und [mm] \lambda b [/mm] mit [mm] \lambda \in [/mm] K muss gelten, dass [mm] \lambda a [/mm] und [mm] \lambda b \in U [/mm] sind. Im Fall dass a=0 bzw. b=0 ist, ist das ja der Fall, aber angenommen, dass weder a noch b=0 sind und [mm]\lambda[/mm]=4, dann ist 4a doch nicht mehr [mm]\in[/mm]U... .

Ist das jetzt richtig durchdacht und wenn nicht kann mir das bitte jmd erklären?

Danke!





        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 So 27.11.2011
Autor: donquijote


> Untersuchen Sie in jedem der folgenden drei Fälle, ob die
> Menge aller
>  [mm]\pmat{a\\ b} \in \IR^{2}[/mm]
>  
> mit der angegebenen Eigenschaft ein Untervektorraum des
> [mm]\IR^{2}[/mm] ist:
>  a.) ab=0
>  
>
> Aus der Eigenschaft ab=0 folgt, dass entweder a oder b
> gleich 0 sein muss. Ein UVR muss abgeschlossen bzgl. der
> Addition sein.
> Also angenommen a=0 dann 0+b= b und das ganze analog zu
> angenommen b=0... damit liegt a+b in der Menge U.

Die Argumentation passt so nicht. Zu prüfen wäre:
Folgt aus [mm] \vektor{a_1\\b_1}, \vektor{a_2\\b_2}\in [/mm] U, dass dann auch [mm] \vektor{a_1\\b_1}+\vektor{a_2\\b_2} [/mm] in U liegt?

>  
> Mein Kopfproblem liegt jetzt bei den Bedingungen der
> Skalarmultiplikation. Für [mm]\lambda a[/mm] und [mm]\lambda b[/mm] mit
> [mm]\lambda \in[/mm] K muss gelten, dass [mm]\lambda a[/mm] und [mm]\lambda b \in U [/mm]
> sind. Im Fall dass a=0 bzw. b=0 ist, ist das ja der Fall,
> aber angenommen, dass weder a noch b=0 sind und [mm]\lambda[/mm]=4,
> dann ist 4a doch nicht mehr [mm]\in[/mm]U... .
>

Versteh ich jetzt nicht, was du damit sagen willst, aber kläre erstmal die erste Bedingung bzgl. Addition.

> Ist das jetzt richtig durchdacht und wenn nicht kann mir
> das bitte jmd erklären?
>  
> Danke!
>  
>
>
>  


Bezug
                
Bezug
Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 So 27.11.2011
Autor: Zelda

Die Addition ist auch so [mm]\in[/mm]U... . Ich verstehe die Sache mit der Skalarmultiplikation nicht, ..., der Skalar ist ja einfach ein Ausdrück für irgendeine Zahl aus K, hier also aus [mm]K^{n}, [/mm] also [mm] \IR^{2}[/mm], ...


Bezug
                        
Bezug
Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 So 27.11.2011
Autor: donquijote


> Die Addition ist auch so [mm]\in[/mm]U... .

Das stimmt nicht, überleg dir das also nochmal. Und dann erübrigt es sich, die Bedingung für die Skalarmultiplikation nachzuprüfen.

> Ich verstehe die Sache
> mit der Skalarmultiplikation nicht, ..., der Skalar ist ja
> einfach ein Ausdrück für irgendeine Zahl aus K, hier also
> aus [mm]K^{n},[/mm] also [mm]\IR^{2}[/mm], ...
>  

PS. Die bedingung für die Skalarmultiplikation ist erfüllt:
Ist [mm] u=\vektor{0\\b} [/mm] und [mm] $\lambda\in [/mm] K, so ist [mm] \lambda u=\vektor{0\\ \lambda b}\in [/mm] U,
ist [mm] u=\vektor{a\\0}, [/mm] so ist [mm] \lambda u=\vektor{\lambda a\\0}\in [/mm] U.
Das spielt aber für die Lösung der Aufgabe keine rolle, da U nicht bezüglich Addition abgeschlossen ist.

Bezug
                                
Bezug
Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 So 27.11.2011
Autor: Zelda

Falls a=0, dann ist [mm]\pmat{0\\ b1}+\pmat{0\\ b2}=\pmat{0\\ b1+b2}[/mm] und ich denke, dass b1+b2 in U liegen muss, weil b1 und b2 in U liegen.



Bezug
                                        
Bezug
Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 So 27.11.2011
Autor: donquijote


> Falls a=0, dann ist [mm]\pmat{0\\ b1}+\pmat{0\\ b2}=\pmat{0\\ b1+b2}[/mm]
> und ich denke, dass b1+b2 in U liegen muss, weil b1 und b2
> in U liegen.
>  
>  

Gegenbeispiel: [mm] u=\vektor{1\\0}, v=\vektor{0\\1}\n [/mm] U, aber [mm] u+v=\vektor{1\\1}\not\in [/mm] U

Bezug
                                                
Bezug
Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 So 27.11.2011
Autor: Zelda

Ok, ..., ich habe enorme Defizite, ich schreibe das alles nochmal ordentlich für mich auf, auch mit den anderen Teilaufgaben und melde mich heute abend zurück zwecks Korrektur... :(


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de