www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraum, Dualraum
Untervektorraum, Dualraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum, Dualraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Do 17.11.2011
Autor: Voij

Aufgabe
Sei V ein K-Vektorraum. Für einen Unterraum U von V sei
[mm] U^{0} [/mm] := {f [mm] \in [/mm] V* ;f(u)=0 [mm] \forall [/mm] u [mm] \in [/mm] U }
Zeigen Sie, dass [mm] U^{0} [/mm]  ein Untervektorraum von V* ist, sowie dass für Teilräume [mm] U_{1}, U_{2} [/mm] von V gilt:
(i) [mm] (U_{1} \cap U_{2})^{0} [/mm] = [mm] U_{1}^{0} [/mm] + [mm] U_{2}^{0}. [/mm]
(ii) Wenn V = [mm] U_{1} \oplus U_{2} [/mm] ist, dann gilt V* = [mm] U_{1}^{0} \oplus U_{2}^{0} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ein Problem mit der Aufgabe (i).
Nach Definition gilt doch:
[mm] (U_{1} \cap U_{2})^{0} [/mm] := {f [mm] \in [/mm] V* ;f(u)=0 [mm] \forall [/mm] u [mm] \in U_{1} \cap U_{2} [/mm] }
[mm] U_{1}^{0} [/mm] := {f [mm] \in [/mm] V* ;f(u)=0 [mm] \forall [/mm] u [mm] \in U_{1} [/mm] }
[mm] U_{2}^{0} [/mm] := {f [mm] \in [/mm] V* ;f(u)=0 [mm] \forall [/mm] u [mm] \in U_{2} [/mm] }

Wenn ich jetzt eine Abbildung f finde, für die f(v)=0 für alle u in [mm] U_{2}, [/mm] aber v ist nicht Element von [mm] U_{1}, [/mm] dann besäße doch die zweite Menge ein Element mehr als die erste.

Oder habe ich da jetzt einen schweren Fehler drin? Würde mich freuen, wenn mir jemand helfen könnte.

        
Bezug
Untervektorraum, Dualraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Do 17.11.2011
Autor: donquijote


> Sei V ein K-Vektorraum. Für einen Unterraum U von V sei
>  [mm]U^{0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= {f [mm]\in[/mm] V* ;f(u)=0 [mm]\forall[/mm] u [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

U }

>  Zeigen Sie, dass [mm]U^{0}[/mm]  ein Untervektorraum von V* ist,
> sowie dass für Teilräume [mm]U_{1}, U_{2}[/mm] von V gilt:
>  (i) [mm](U_{1} \cap U_{2})^{0}[/mm] = [mm]U_{1}^{0}[/mm] + [mm]U_{2}^{0}.[/mm]
>  (ii) Wenn V = [mm]U_{1} \oplus U_{2}[/mm] ist, dann gilt V* =
> [mm]U_{1}^{0} \oplus U_{2}^{0}[/mm]
>  Ich habe diese Frage in keinem
> Forum auf anderen Internetseiten gestellt.
>  
> Ich habe ein Problem mit der Aufgabe (i).
>  Nach Definition gilt doch:
>  [mm](U_{1} \cap U_{2})^{0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= {f [mm]\in[/mm] V* ;f(u)=0 [mm]\forall[/mm] u [mm]\in U_{1} \cap U_{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  [mm]U_{1}^{0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= {f [mm]\in[/mm] V* ;f(u)=0 [mm]\forall[/mm] u [mm]\in U_{1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  [mm]U_{2}^{0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= {f [mm]\in[/mm] V* ;f(u)=0 [mm]\forall[/mm] u [mm]\in U_{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  
> Wenn ich jetzt eine Abbildung f finde, für die f(v)=0 für
> alle u in [mm]U_{2},[/mm] aber v ist nicht Element von [mm]U_{1},[/mm] dann
> besäße doch die zweite Menge ein Element mehr als die
> erste.
>  
> Oder habe ich da jetzt einen schweren Fehler drin? Würde
> mich freuen, wenn mir jemand helfen könnte.

Ich versteht nicht so ganz, ob u und v in deiner Argumentation dasselbe sein sollen oder in welcher Relation sie zueinander stehen.
Aber: Ist f(u)=0 für alle u in [mm] U_{2}, [/mm] dann gilt erst recht f(u)=0 für alle u in [mm] $U_1\cap U_{2}\Rightarrow f\in (U_{1} \cap U_{2})^{0}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de