Untervektorraum/ Lineare Hülle < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo, ich habe die folgenden zwei Fragen:
1. "Im Vektorraum P1 über R sei p irgendein spezieller Vektor, z.B: p(x) = 2x+3. Dann bildet die Menge {s*p | s e R} einen Untervektorraum von P1, dagegen bildet die Menge {s*p | s e Z} keinen Untervektorraum von P1".
----> Warum?
2. "Im Vektorraum P2 seien die Vektoren x, x² und x+x² gegeben. Die lineare Hülle
[x,x²] = {r1x + r2x² | r1, r2 e R}
besteht aus allen Polynomen 1. und 2. Grades a0 + a1x +a2x² mit a0 = 0. Das Nullpolynom ist also enthalten. Es gilt zudem:
[x,x²] = {r3x + r4(x+x²) | r3, r4 e R}
= {(r3+r4)x + r4x² | r3, r4 e R}
= {r1x + r2x² | r1, r2 e R}
= [x,x²]
Aber
[x+x²] = {r5(x+x²) | r5 e R}
= {r5x + r5x² | r5 e R}
"ungleich" [x,x²]
da z.B. f(x) = 3x + 5x² "ungleich" [x+x²], aber f(x) e [x,x²]"
--> Was will man damit sagen?? Kann mir das vielleicht irgendjemand "übersetzen"??
PS: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.emath.de/Mathe-Board/messages/6/16391.html?1116078246
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:05 So 15.05.2005 | Autor: | Stefan |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo Stupidentin!
> 1. "Im Vektorraum P1 über R sei p irgendein spezieller
> Vektor, z.B: p(x) = 2x+3. Dann bildet die Menge {s*p | s e
> R} einen Untervektorraum von P1, dagegen bildet die Menge
> {s*p | s e Z} keinen Untervektorraum von P1".
> ----> Warum?
Nun ja, ein Untervektorraum muss ja abgeschlossen sein unter Multiplikation mit Skalaren.
Nun gilt zwar $p=1 \cdot p \in \{s \cdot p\, : \, s \in \IZ\}$,
aber (zum Beispiel=:
$\pi \cdot p \notin \{s \cdot p\, : \, s \in \IZ\}$.
Daher kann $\{s \cdot p\, : \, s \in \IZ\}$ kein Untervektorraum von $P_1$ sein.
> 2. "Im Vektorraum P2 seien die Vektoren x, x² und x+x²
> gegeben. Die lineare Hülle
> [x,x²] = {r1x + r2x² | r1, r2 e R}
> besteht aus allen Polynomen 1. und 2. Grades a0 + a1x +a2x²
> mit a0 = 0. Das Nullpolynom ist also enthalten. Es gilt
> zudem:
>
> [x,x²] = {r3x + r4(x+x²) | r3, r4 e R}
> = {(r3+r4)x + r4x² | r3, r4 e R}
> = {r1x + r2x² | r1, r2 e R}
> = [x,x²]
Naja, erst einmal bis hierhin das Wichtigste: $[x,x^2]$ ist der kleinste Unterraum von $P_2$, der die beiden Polynome $p_1(x)=x$ und $p_2(x)=x^2$ enthält. Er enthält also alle reellen Linearkombinationen dieser Polynome.
> Aber
> [x+x²] = {r5(x+x²) | r5 e R}
$[x+x^2]$ ist der kleinste Unterraum von $P_2$, der das Polynom $p_2(x)=x+x^2$ enthält. Er enthält also alle reellen Vielfachen dieses Polynoms.
Daher gilt:
$[x,x^2] = \{rx + sx^2}\, : \, r,s \in \IR\}$
und
$[x+x^2] = \{r(x+x^2) = rx+rx^2\, : \, r \in \IR\}$.
Ich denke mal du siehst den Unterschied. Beim ersten Unterraum darf ich die Skalare vor $x$ und $x^2$ unabhängig voneinander wählen, beim zweiten Unterraum müssen sie identisch sein. Ich habe also sozusagen einen "Freiheitsgrad" weniger.
> = {r5x + r5x² | r5 e R}
> "ungleich" [x,x²]
> da z.B. f(x) = 3x + 5x² "ungleich" [x+x²], aber f(x) e
> [x,x²]"
Hier ist dann ein Beispiel dafür aufgeführt. Die Skalare vor $x$ und $x^2$ sind verschieden. Daher gilt:
$3x+5x^2 \in [x,x^2]$,
aber:
$3x+5x^2\notin [x+x^2]$.
Viele Grüße
Stefan
|
|
|
|